
2 Week 2: Data Structures, If Statements and Loops

This week we are going to take a look at some of the useful data structures and functions that are
available to us in python.

2.1 Lists

Last week we learned that we can store lots of di↵erent data types as variables in our program.
A python list is an ordered sequence of elements. Making a list is very simple, we demonstrate it
with an example.

#Example 2.0

empty list

my_list = []

list of integers

my_list = [1, 2, 3]

list with mixed data types

my_list = [1, "Hello", 3.4]

A list can contain nothing (as with the first list) or it can contain a mixture of di↵erent data types
(as with the last list). Importantly, a list can also contain other lists; we call this a nested list.

#Example 2.1

nested list

my_list = ["mouse", [8, 4, 6], ['a']]

2.1.1 Accessing elements

When we want to assess the contents of a list we can use square brackets to call the index; note
that python indexes a list from 0, so if we want the first element of the list in example 2.1 we would
write the following:

#Example 2.2

my_list = ["mouse", [8, 4, 6], ['a']]

my_list[0]

"mouse"

We can find out how many elements a list has by calling the len() function, this will return the
number of elements in the list as an integer; lets see this in practice.

4

#Example 2.3

my_fruit_list = ['Apple', 'Banana', 'Kewi', 'Orange', 'Pineapple']

len(my_fruit_list)

5

We can find elements at the end of a list by using negative values, so if we wanted to find the last
element of the list in example 2.1 we would write the following:

#Example 2.4

my_list[-1]

['a']

2.2 Functions for Lists

As we have seen previously, the len() function is useful for quickly finding how many entries we
have in a list. We will now introduce two more functions useful for lists.

- max() : The max function returns the largest element of a list of numbers or the string which
would appear last if sort in alphabetical order.

- min(): Akin to max() this function returns the smallest number or the first string when they
are sorted alphabetically

Lets see how to use these functions with some more examples.

#Example 2.5

user_names = ['Adam','Jake','Mike','Jason','Mark','Ben','Jemma','Dave']

user_age = [17,28,15,90,53,9,40,26]

print(max(user_names))

print(max(user_age))

print(min(user_names))

print(min(user_age))

Mike

90

Adam

9

5

2.3 Methods for Lists

This is the first time we meet a method in this course. A method is a special type of function that
belongs to an object. A useful method for lists is that of the append method. We call the method
using the .append su�x. Let see how to append elements to a list with an example.

#Example 2.6

current_users = ['Adam','Jake','Mike','Jason','Mark','Ben','Jemma','Dave']

current_users.append('Kyle')

print(current_users)

current_users.append('James')

print(current_users)

['Adam', 'Jake', 'Mike', 'Jason', 'Mark', 'Ben', 'Jemma', 'Dave', 'Kyle']

['Adam', 'Jake', 'Mike', 'Jason', 'Mark', 'Ben', 'Jemma', 'Dave', 'Kyle', 'James']

There are also other methods that can be used on lists although we don’t cover them here.

2.4 The if statements.

We use conditional statements everyday! They normally have the word if in them. A simple
example is

if it is 9:00 am, I will drink a co↵ee

If statements allow us to do something called flow control where we no longer execute every line of
code in sequential order but we can use logic to decide which parts of the code get executed. Lets
see how we would rewrite our co↵ee expression in language python would understand.

#Example 2.7

current_time = float(input('what time is it? : '))

if current_time == 9.00:

print('Have some coffee!')

what time is it? : 9.00 #(we inputted time of nine here)

Have some coffee!

Python also has the option to check if multiple expressions are true with the else-if (elif) command,
this means we can check multiple expressions and only execute the code when they are true. We
also have the else command, this code will be executed if all the other if and else-if statements have
been false. Lets return to example 2.7 to see how it works.

6

#Example 2.8

current_time = float(input('what time is it? : '))

if current_time == 9.00:

print('Have some coffee!')

elif current_time == 10.00:

print('Have a sandwich!')

else:

print('Do some programming!')

----------[run 1]

what time is it? : 10.00 #(we inputted time of ten here)

Have a sandwich!

----------[run 2]

what time is it? : 12.00 #(we inputted time of twelve here)

Do some programming!

2.5 Loops

There are two types of loops in Python, for and while. Loops provide a method for iterating over
operations when programming. We will begin by looking at the for loop.

2.6 The For Loop

The for loop in Python is used to loop over a sequence, for example a list; it provides a method for
taking every element within a sequence and providing some form of operation on it. The general
syntax for a for loop is given by

for value in sequence:

operations on value

Lets begin with an example. Recall the list of users in example 2.6, if we implement a for loop we
can take each of the strings within the list and do some operation, for example print to the screen.
This is what we do in example 2.9.

#Example 2.9

current_users = ['Adam','Jake','Mike','Jason','Mark','Ben','Jemma','Dave']

for name in current_users:

print(name)

Adam

Jake

7

Mike

Jason

Mark

Ben

Jemma

Dave

It is safe to say that the for loop is one of the most important tools you have in programming; it
will come in very useful!

2.7 While loop

The final topic for this week is the while loop. The while loop is similar to the for loop but rather
than working through a finite sequence the while loop will operate while some condition holds. The
general syntax for the while loop is given by

while condition hold:

perform operation

To understand this we make use of an example in example 2.10.

#Example 2.10

counter = 0

while counter <= 10:

print(counter)

counter = counter + 1

0

1

2

3

4

5

6

7

8

9

10

8

