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ABSTRACT

Point by point strain scanning is often used to map the residual stress (strain) in engineering materials and components. However, the gauge
volume and, hence, spatial resolution are limited by the beam defining apertures and can be anisotropic for very low and high diffraction
(scattering) angles. Alternatively, wavelength resolved neutron transmission imaging has a potential to retrieve information tomographically
about residual strain induced within materials through measurement in transmission of Bragg edges—crystallographic fingerprints whose
locations and shapes depend on microstructure and strain distribution. In such a case, the spatial resolution is determined by the geometrical
blurring of the measurement setup and the detector point spread function. Mathematically, reconstruction of the strain tensor field is
described by the longitudinal ray transform; this transform has a non-trivial null-space, making direct inversion impossible. A combination
of the longitudinal ray transform with physical constraints was used to reconstruct strain tensor fields in convex objects. To relax physical
constraints and generalize reconstruction, a recently introduced concept of histogram tomography can be employed. Histogram tomography
relies on our ability to resolve the distribution of strain in the beam direction, as we discuss in the paper. More specifically, Bragg edge strain
tomography requires extraction of the second moment (variance about zero) of the strain distribution, which has not yet been demonstrated
in practice. In this paper, we verify experimentally that the second moment can be reliably measured for a previously well characterized alu-
minum ring and plug sample. We compare experimental measurements against numerical calculation and further support our conclusions
by rigorous uncertainty quantification of the estimated mean and variance of the strain distribution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0085896

Residual stress (and thereby elastic strain) is the stress that
remains in a body when no external forces are applied.1 Because these
internal stresses add to those arising from externally applied loads, if
they are not detected they can give rise to unexpected behaviors and
premature failure. Therefore, information about the strain measured
within polycrystalline materials is critically important for understand-
ing the deformation and fracture mechanics of engineered compo-
nents. A well-established technique used for strain measurements is
based on neutron diffraction (or Bragg scattering). Depending on the
material, the scattered neutrons will constructively interfere with each

other only in particular directions and produce an intensity pattern
(the so-called Bragg peaks) from which the structure of the material is
derived. Measurement of the position of Bragg peaks from diffraction
allows the determination of lattice spacings, while the measurement of
the relative shift in the positions provides information on lattice
strains.2 To achieve high spatial resolution, a sample is raster scanned
with a collimated or focused beam and the angle of scattered beam 2h
(e.g., angle-dispersive diffraction) or wavelength/energy (e.g., energy-
dispersive diffraction) is recorded to deduce the interplanar spacing,
point by point, using Bragg’s equation. This is then used to infer strain
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based on a comparison with the reference interplanar spacing. To
overcome some of the disadvantages given by neutron diffraction mea-
surements (e.g., slow acquisition, the uncertainty of the exact specimen
or gauge location along the beam3), a new technique called Bragg edge
neutron transmission for strain measurements was proposed and
demonstrated.4,5

In this respect, a polychromatic neutron beam in a combination
with a Time-of-Flight (ToF) area detector can be employed to register
both spatial and ToF (wavelength) information about the transmitted
neutrons. According to Bragg’s law,

2dhkl sin h ¼ khkl; (1)

coherent elastic scattering at an incident angle of h can happen only
for wavelengths k shorter than twice the spacing between the lattice
planes (dhkl). Hence, the transmitted spectrum will exhibit a rapid
increase in the transmitted intensity at a wavelength k slightly longer
than twice this distance because intensity can no longer be diffracted
out of the transmitted beam by this hkl family of planes. This sharp
change in transmission is called a Bragg edge and allows the establish-
ment of a relationship between the transmitted neutron spectral fin-
gerprint and the crystallographic phases in the material. The
application of the Bragg edge neutron transmission for strain mapping
has been recently extended to high spatial resolutions due to advances
in micro-channel-plate (MCP) detector technology.6,7

Given a sample rotation, a strain tensor field in the object can be
reconstructed tomographically (in general, rotations about six direc-
tions that do not lie on a projective conic are required to reconstruct
tensor field8). This technique is referred to as Bragg edge strain tomog-
raphy and seeks to determine the spatial distribution of strain inside a
polycrystalline sample from the change in the neutron transmission
spectra near a Bragg edge.3,8–11 Given ideal conditions and a uniformly
strained material, the Bragg edge can be modeled as a Heaviside func-
tion multiplied by a linear function of wavelength.12 The result of this
uniform strain is to shift the relative position (mean) of the Bragg edge
with respect to that for a sample without strain present. However, the
mean cannot provide sufficient information to resolve the strain distri-
bution along the ray path,8 i.e., there are infinitely many distributions
of the strain fields along the beam path, which will produce the same

mean. This problem is related to a non-trivial null-space of the longi-
tudinal ray transform, which gives a mathematical foundation for
Bragg edge strain tomography,8 i.e., the mean measurements do not
uniquely determine strain tensor fields. To overcome this problem,
tomographic data can be combined with equilibrium equations of elas-
ticity using a finite element approach to find the strain.11 Alternatively,
Lionheart12 observed that an experimentally measured Bragg edge is
representative of the cumulative strain histogram along a neutron ray
within the material. Hence, differentiation of the Bragg edge will theo-
retically return the histogram of strain, i.e., the distribution of strain
components collinear with the ray discretized into bins. The shape of
the histogram is the convolution of the histogram for the unstrained
case with the histogram of the relevant component of strain along the
beam, and the second moment of the deconvolved histogram is the
ray transform of the symmetric second tensor power of the strain.
Hence, the histogram longitudinal ray transform12 can be used to
reconstruct the strain tensor in every voxel. The proposed theoretical
method relies on our ability to measure the second moment of the
strain distribution in transmission (projection) data, which has not yet
been demonstrated in practice.

In this paper, we demonstrate that the second moment, the vari-
ance about zero, of strain in the ray direction can be captured experi-
mentally. We present an analysis of two reference samples [Fig. 1(a)]
manufactured within the Versailles Project on Advanced Materials
and Standards (VAMAS).13 The first sample is a shrink-fit aluminum
alloy assembly of ring and plug (henceforth the strained sample). The
ring and the plug have outer diameters of 50 and 25mm, respectively.
The second sample is an unstained plug of the same diameter (hence-
forth the strain-free sample). Both samples were manufactured under
well controlled conditions and are of weak crystallographic texture
and low residual stress prior to assembly. In addition, they have been
extremely well characterized in a global round-robin study.14

In order to compare experimental measurements with theoretical
predictions, we briefly recall some details about the expected strain in
the strained sample. The axial stress of the plug, rp

zz , the ring rr
zz , and

the interface pressure, P, has been determined in a series of neutron
diffraction strain experiments14 and has been found to be �15, 5, and
48MPa, respectively. The values of Poisson’s ratio, �, and the Young’s

FIG. 1. (a) VAMAS round robin shrink fitted aluminum ring-and-plug and plug test samples (figure taken from the VAMAS report16) and (b) err component of the strain tensor
scaled by sin2 /. (c) ehh component of the strain tensor scaled by cos2 /. (d) Plot of the expected strain (e ¼ ehh cos2 /þ err sin

2 /) within the strained sample for a ray
path indicated by the arrow above the figure.
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modulus, E, of the material were taken to be 0.33 and 68 GPa,
respectively. The radial and hoop strain can be obtained via solving
the governing equations of linear elastic theory.15 Assuming that
the axis of the cylinder is perpendicular to the direction of travel of
the sufficiently parallel neutron beam, the strain along the ray
path, e, is related to the radial (err) and hoop (ehh) components of
strain via e ¼ err sin2 /þ ehh cos2 /, where / is the angle anticlock-
wise from the neutron direction of travel. We will refer to the
resulting distribution of strain as the projected strain. We discre-
tize the analytical strain map onto the experimental detector grid
and sample from this array to calculate the first and the second
moments of the distribution along the ray path. Figures 1(b)–1(d)
show the individual contour maps of the two calculated compo-
nents of strain and their sum.

The sample was measured17 at the Imaging and Materials
Science & Engineering (IMAT) beamline operating at the ISIS spall-
ation neutron source (Rutherford Appleton Laboratory, UK).18,19 At a
pulsed neutron source, the wavelengths of the detected neutrons are
calculated from their time of flight by

k ¼ hðT þ DT0Þ
mL

; (2)

where k is the neutron wavelength (in meters), h is Planck’s constant,
T is the neutron time of flight (in seconds), DT0 is the time offset of
the source trigger received by the data processing electronics (in sec-
onds), m is the neutron mass (in kilograms), and L is the flight path
from source to the detector (in meters). The MCP detector6,20 used for
the experiment was configured to record 2897 wavelength channels
between 3.12 and 5.12 Å giving access to lattice planes from 1.56 to
2.56 Å in d-spacing, which for aluminum are the 111 and 200 lattice
planes. To reduce the undesirable effect of counts loss,21 two shut-
ter intervals were set in the ToF (wavelength) domain with a reso-
lution of 7:21 � 10�4 and 3:60 � 10�4 Å, respectively. The MCP
detector has 512� 512 pixels, 0.055mm pixel size, giving a field of

view of approximately 28� 28mm2. A visible laser beam was used
to align the cylinder axis of the sample with respect to the vertical
edge of the detector and to ensure that the plug, the ring and their
interface are in the field-of-view [Fig. 2(a)]. Subsequently, the
strain-free reference sample was aligned and centered vertically
and measured.

Individual projections of samples and a single normalization
image were measured using 4 h long exposures. Flat-field and MCP
detector related corrections21 were adapted from BEAn22 and applied
to the projections. As the strained sample is axially symmetric, of weak
crystallographic texture and only a radial-hoop internal stress exists,
we assume that the strain does not vary along the cylinder axis.
Consequently, we sum over each vertical column of pixels to improve
the signal-to-noise ratio. Such aggregated pixels are commonly
referred to as macro-pixels.

Given the measured wavelength range, two distinct Bragg edges
were present in the acquired spectra, k � 4:0 Å (200 lattice planes),
and k � 4:7 Å (111 lattice planes), with the latter one more pro-
nounced and also sampled with higher wavelength resolution
[Fig. 2(b)]. Therefore, we performed analysis only for the latter edge.
To model the transmission spectra around the Bragg edge, we used the
Santisteban function23

TrðK;wÞ ¼ exp ð�ða0 þ b0KÞÞð1� exp ð�ða1 þ b1KÞÞÞBðKÞ; (3)

where K is the experimentally acquired transmission signal measured
in Å and w ¼ ða0; b0; a1; b1Þ is a vector of the model parameters.

Here, a0, b0, and a1, b1 describe the exponential attenuation to
the right (tail) and to the left (pedestal) of the Bragg-edge, respectively,
and BðKÞ is given by

B Kð Þ ¼ 1
2

�
erfc �K� khklffiffiffi

2
p

r

� �
� exp �K� khkl

s
þ r2

2s2

� �

� erfc �K� khklffiffiffi
2
p

r
þ r

s

� ��
;

FIG. 2. (a) Scheme illustrating experimental data acquisition. (b) Plot showing the transmission of neutrons (%) in a single macro-pixel as a function of wavelength for both
samples. Both curves are plotted with the same vertical axis. As samples have different diameters and have been positioned slightly differently (translationally), a pixel with the
same index in both transmission images will correspond to a different penetration length through the material, hence, intensity. Therefore, there is a vertical offset between the
two plotted curves. A gap in the recorded spectra is caused by detector readout between two shutter intervals. (c) Measured Bragg edge in a single macro-pixel overlaid with
the fitted model function.
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where khkl is the position of the Bragg-edge, s is the moderator decay
constant, and r is the Gaussian broadening due to the sample and
instrument. See the supplementary material for derivation of the
model.

The model23 was not explicitly derived to account for strain but
rather to model blur in the wavelength dimension due to the stochastic
nature of neutron moderation and the geometric effects of the beam-
line.24,25 Nevertheless, the sensitivity of the model to strain has been
demonstrated in several studies.26–29

We used the non-linear least squares fitting (Levenberg–
Marquardt algorithm) to fit the model function [Eq. (3)] and estimate
parameters. To avoid the local minimum problem common to the
non-linear fitting, we employ a three stage fitting process.23 An exam-
ple of a measured Bragg edge overlaid with the fitted model function is
shown in Fig. 2(c).

The first moment (mean) of the projected strain is given by30

hei ¼ kshkl � k0hkl
k0hkl

; (4)

where k0hkl and kshkl are the position of Bragg edge for the strain-free
sample and the strained sample, respectively.

Our strategy for the measurement of the second moment (vari-
ance about zero) is as follows. The value of the moderator decay con-
stant, s, is a function of the geometry and temperature of the
moderator used in the experiment;22 as these parameters remained
approximately constant within the experiment, s is expected to be con-
stant. Parameter r is a function of width of the initial pulse from the
moderator and sample-related broadening.31 As the shape of the pulse
is expected to be repeatable and uniform in the spatial dimension, any
spatial change in r can be attributed to the change in variance of strain
in the beam direction. Although r in Eq. (3) captures broadening of
the Bragg edge, we need to establish a relationship between an instru-
ment response and the variance of strain along a beam direction.
Assuming a linear relationship, the model of measurements is given by
y ¼ mxþ c, where x ¼ ½x0; x1;…; xj�1� is a vector of the theoretically
predicted variance of strain in the beam direction at detector macro-
pixel j between 0 and 511 and y ¼ ½r0; r1;…; rj�1� is experimentally
measured r at each macro-pixel j. We use linear regression to define
parameters m and c. Obviously, this simple proof-of-concept measure-
ment model cannot substitute a proper instrument scale calibration
necessary to establish this tomographic measurement technique.

To support our findings, we perform uncertainty quantification
based on Bayesian interference.32 In the Bayesian framework, the mea-
surement model is represented as a joint probability distribution of
unknown parameters g and observations Y,

pðgjYÞ ¼ pðYjgÞpðgÞ
pðYÞ ; (5)

where pðYjgÞ is the likelihood function of g, i.e., the predictive distri-
bution of Y, given g. The prior distribution pðgÞ encodes the prior
knowledge and model assumptions. The model evidence pðYÞ maps
the likelihood, prior and observations to a single value that describes
the probability of observation. Finally, pðgjYÞ is the posterior probabil-
ity: the probability of g after Y is observed.

The mean of the likelihood is given by the parametric model for
each data point. Let j between 0 and 511 denote the position of a

FIG. 3. Variation in the second moments as a function of detector pixel obtained via
HMC Bayesian inference. MAP estimate refers to the position of the maximum pos-
terior density, and the 95% is found from 62 standard deviations of the posterior
distribution.
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column of pixels and ½Yj�i ¼ YðkiÞj be the mean measured transmis-
sion for wavelength bin i in pixel column j. We model the transmis-
sion error over a macro-pixel as additive Gaussian noise with zero
mean and a variance that is linearly dependent on the transmission.30

Then,

YðkiÞj ¼ TrðkijwjÞ þ nðxjki; jÞ; (6)

where nðxjki; jÞ is a Gaussian random variable

nðxjki; jÞ � N ð0; sðkiÞ2j Þ; (7)

and sðkiÞ2j is the unbiased estimate of the sample variance. Then, the
likelihood pðYjgÞ is given by

pðYðkiÞjjwjÞ ¼ pðnðxjki; jÞ ¼ YðkiÞj � TrðkijwjÞÞ (8)

/ exp � 1
2
jjYðkiÞj � TrðkijwjÞjj

2
R

� �
; (9)

where jj � jj2R is the covariance-weighted norm. Finally, we converge to

pðYðkiÞjjwjÞ ¼ exp �
X
ki

1
2sðkiÞ

YðkiÞ � TrðkijwjÞ
� �2 !

: (10)

The prior distributions on the parameters of the model wj are
assumed to be weakly informative (wide peak) Gaussian’s centered at
the best estimates obtained from the Levenberg-Marquardt fit for each
parameter. We further use the Hamiltonian Monte Carlo (HMC)33

method to sample from the posterior distribution. Bayesian interfer-
ence and HMC are implemented using the Python wrapper PySTAN
for the probabilistic programming framework STAN.

Figure 3 compares a maximum a posteriori probability (MAP)
estimation of the mean and second moment obtained from the experi-
mental data. Overlaid we plot a confidence interval of two standard
deviations of the distribution. For the strain-free case, parameter r is
expected to be constant but greater than 0 as r also models blur in the
wavelength dimension. Therefore, the theoretical predictions are given
by the best linear fit to estimated data. Theoretical predictions for the
strained sample are given by our calculations in Fig. 1, which were
scaled linearly to best match data. It can clearly be seen that both
mean and variance are within the uncertainty interval for both samples

and the main trends are captured. However, there is strong noise pre-
sent in all estimated parameters and for some data points the MAP
estimate of the second moment is 0 and the 95% confidence interval
includes negative values. There are several reasons for the observed
behaviors.

Following Hendriks et al.,30 we assumed Gaussian noise in the
measured transmission data. In Fig. 4, we show the distribution of
error in some representative macro-pixels overlaid with the fitted
Gaussian probability density function. While the distributions have a
clear bell-shape, they are also skewed toward negative values.
Conducting a combined D’Agostino and Pearson’s omnibus test34

with a significance level of a ¼ 0:001 showed that of the 741 376 dis-
tributions considered 690 688 have enough evidence to reject the
hypothesis that the data were drawn from a Gaussian distribution.
The reason for this skew might be the overlap correction21 used to
compensate for counts loss. The correction relies on Poisson statistics,
and the weighting factor for each wavelength bin is calculated based
on values in shorter wavelength bins introducing inter-bin correlations
and potentially a skew in the data.

The Santisteban model23 was not designed to account for strain,
and the parameter r, which was used in this study as a measure of
strain variance, does not have any physical meaning in the model.
Second, the model assumes the Gaussian distribution of strain. In
Fig. 5, we show a posterior distribution of r for both samples. For the
strained sample, we chose a data point where the fitting resulted in
r¼ 0. The posterior distribution is concentrated at r¼ 0, consistent
with the least-square fit. For the strain-free sample, the posterior distri-
bution is multimodal with two pronounced peaks. Both distributions
highlight inadequacy of the Santisteban model for uniquely identifying
the second moment of the strain distribution. Therefore, more
research is needed to have more accurate physical Bragg edge models
for strain measurements.

While the demonstration in this paper is limited to a texture-free
sample, the strain reconstruction approach12 is applicable to a more
general case of a textured sample. In the general case, we need to
decouple various crystallographic information encoded in the mea-
sured Bragg edges. The actual shape of a Bragg edge in transmitted
neutron beam reflects the crystal structure averaged along the beam
path. With the current Bragg edge model, we explicitly assume that
the strain distribution along the beam path is Gaussian. Second,

FIG. 4. Histograms showing the distribution of the error for different values of transmission for the central column of the detector pixels. A Gaussian probability density function
has been fitted to the data (solid line).
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crystallographic texture (significant preferred orientation of crystalli-
tes) might not be properly handled by the current Bragg edge model.
The texture affects the number of crystallites for which the backscat-
tering condition is fulfilled.4,35 Hence, it will affect the edge’s pedestal,
tail, and height. The current Bragg edge model was not designed to
account for these effects and might not fit the data in the presence of
significant texture. Hence, either a more accurate physical modeling of
a Bragg edge is needed to decouple the effects of texture and strain on
the Bragg edge, or direct derivation and deconvolution of Bragg edge
data can be used. With the current measurement setup, the later
method is not feasible due to low wavelength resolution near the edge.

To conclude, we have demonstrated that the second-order
moment of the strain distribution can be obtained experimentally. The
theoretically predicted first and second moments are covered by the
95% confidence interval estimated through Bayesian inference.
However, we found out that Gaussian nature of the transmission error
could only be established with relatively low confidence. Further work
in this area should seek to improve our confidence in the choice of like-
lihood. Furthermore, the posterior distribution shows direct evidence
that the semi-empirical Santisteban model is inadequate for uniquely
extracting higher order moments in general. Therefore, a model that
explicitly accounts for the moments of the strain distribution and for
texture effects in the material is needed. Despite the limitations of the
current study, our findings pave the way for neutron strain tomogra-
phy. The task of more accurate Bragg edge modeling, calibration, and
uncertainty quantification is an opportunity for future research.

See the supplementary material for derivation of the Santisteban
model.
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