
Surface Reconstruction of Point Clouds
Towards moving least squares using a learned MLP basis

MSc Thesis

Kyle Fogarty

25862832@students.lincoln.ac.uk

School of Computer Science
University of Lincoln

Supervisors:
Dr. Petra Bosilj (University of Lincoln)

Dr. Cengiz Öztireli (University of Cambridge)

September 22, 2022

Acknowledgements

I would like to thank my supervisors Dr Petra Bosilj and Dr Cengiz Öztireli for
their guidance and support throughout this project; I look forward to working
with you both over the next three years of my PhD.

Financial Support
This work was supported by the Engineering and Physical Sciences Research
Council [EP/S023917/1], as part of the Center for Doctoral Training in Agri-
food robotics (Agri-FoRwArdS).

i

Abstract

The ability to accurately perceive and model natural structures is a central consid-
eration of many application, including robotic. In this project we propose a new
neural based approach to reconstruction: starting with the moving least squares
reconstruction approach, we make use of a multi-layer perception to develop a set
of learned basis functions for optimal reconstruction. To enable the development
of the novel approach, we first construct a novel 2D point-set dataset we refer
to as Shapeset. We then construct the PyPointset library, which implements
three different, existing, surface reconstruction methods to act as benchmarks.
Finally, we present our experimentation with the novel neural approach, high-
lighting strengths and current weaknesses, and provide an outlook to future work
on this topic.

ii

Contents

Acknowledgements i

Abstract ii

1 Project Introduction 1

1.1 Introduction . 1

1.2 The Surface Reconstruction Problem 2

1.3 Project Aims & Objectives . 3

1.4 Contributions . 3

1.5 Report Structure . 4

1.6 Assumed Knowledge . 4

1.7 A Brief Note On Nomenclature 4

2 Differential Geometry 5

2.1 Manifold Surfaces . 5

2.1.1 Differential Properties of Manifolds 6

2.2 Implicit Surface . 7

2.2.1 Signed Distance Function 8

3 Function Approximation 10

3.1 Least Squares Approximation . 10

3.1.1 The Test Problem . 11

3.1.2 A Note On Basis Functions 11

3.1.3 Ordinary Least Squares 12

3.1.4 Moving Least Squares . 13

3.2 Neural Networks for Function Approximation 19

3.2.1 Introduction to Neural Networks 19

3.2.2 Evaluating the MLP . 19

iii

Contents iv

3.2.3 Training the MLP . 21

3.2.4 Neural Network Approximation Power 23

4 Literature Review 27

4.1 Local Smoothness . 27

4.1.1 Tangent Projection Methods 28

4.1.2 Moving Least Squares (MLS) 29

4.2 Global Smoothness . 32

4.2.1 Radial Basis Function . 32

4.2.2 Poisson Reconstruction 33

4.3 Data-driven Approaches . 35

4.3.1 Direct SDF Inference . 35

4.3.2 Neural MLS Framework 36

4.3.3 Other Learning Based Approaches 37

4.4 Summary . 37

5 The Shapeset Dataset 39

5.1 Shapeset Dataset Pipeline . 39

5.1.1 Image Resizing . 40

5.1.2 Edge Detection . 40

5.1.3 Surface Normal Estimation 42

5.1.4 Point-set Resampling . 44

6 Benchmark Approaches 47

6.1 Reconstruction Methods . 47

6.1.1 Implicit Moving Least Squares 47

6.1.2 Robust Implicit Moving Least Squares 50

6.1.3 Implicit Geometry Regularisation 55

6.2 Point-set Reconstruction Library 56

6.2.1 The Point-set Class . 56

6.2.2 IMLS Implementation . 57

Contents v

7 A Novel MLS Approach 61

7.1 MLP-MLS Overview . 61

7.2 MLP-MLS in 1D . 63

7.2.1 The Test Problem . 63

7.2.2 The Approximation Procedure 63

7.2.3 Experiments in 1D . 65

7.3 MLP-MLS in 2D . 70

7.3.1 Alterations to the MLP-MLS Approach 70

7.3.2 MLP-MLS Reconstruction: Framework 71

7.3.3 MLP-MLS Reconstruction: Experiments 73

7.3.4 MLP-MLS Reconstruction: Results 73

7.3.5 MLP-MLS Reconstruction: Discussion 74

8 Conclusion & Future Work 79

Bibliography 81

Chapter 1

Project Introduction

1.1 Introduction

Over the past three decades, point clouds have received increased attention as a
representation of 3D geometry in the fields of computer graphics, computer vision,
and robotics [1, 2, 3]. Driven by the advances in scanner technologies, such as
Light Detection and Ranging (LiDAR) [4], point clouds are now relatively easy
and fast to obtain. 3D scanning technologies are even making their way into
main-stream commercial products, like smartphones and tablets.

While point clouds are typically the geometry representation of raw sensor data,
they are not always the best representation for down-stream perception and
graphics tasks. Classically, there are four methods of representing surfaces, which
we illustrate in Fig. 1.1. While point-sets, meshes, and voxel-grids provide differ-
ent forms of discrete representations for geometry, there exists a growing interest
in using continuous implicit functions to representation geometry.

Discrete

Continuous

1

Discrete

Continuous

1

Figure 1.1: Shows existing representations of scanned 3D data. Typically, point-
sets are obtained from raw sensors. Mesh and voxel representations are discrete
but can be directly visualised. Implicit representations are continuous and have
flexible topology, but require further processing to be visualised.

While point-sets are lightweight and flexible, they carry no information about an
objects topology. Moreover, implicit surface representations have the benefit of

1

1. Project Introduction 2

flexible topology, meaning the space of shapes they can represent is large com-
pared with other representations. Once an implicit surface is defined, algorithms
like March Cubes [5] allow for the efficient transformation of implicit surfaces
into meshes or voxel grids, the discretisation step required to rendered objects.
Implicit surface representations also benefit from high memory efficient because
only the parameters of the implicit function are required to be stored for future
reconstructions.

1.2 The Surface Reconstruction Problem

In this project, we consider the problem of obtaining an implicit representation of
a surface given a point-set representation; we will refer to this problem as surface
reconstruction. This idea is captured in Fig. 1.2, where we aim to go from a
discrete point-set shown on the right to an implicit function representation in the
center. The implicit function can then be easily meshed using existing tools to
produce the rendered mesh surface on the left.

Your Paper

You

September 8, 2022

Abstract

Your abstract.

1 Introduction

Point-set

Implicit function

Mesh

1

Your Paper

You

September 8, 2022

Abstract

Your abstract.

1 Introduction

Point-set

Implicit function

Mesh

1

Your Paper

You

September 8, 2022

Abstract

Your abstract.

1 Introduction

Point-set

Implicit function

Mesh

1

Figure 1.2: Scene shows two renders of the the Stanford Bunny [6], one of the
most commonly used test models in computer graphics. The render on the left has
a surface defined by a mesh. The render on the right shows a discretised point-set
representation of the surface. The aim of point-set surface reconstruction is to
produce algorithms that can take the input on the right and produce an implicit
representation, which can then be used to generate the mesh on the left.

The problem of surface reconstruction is mathematically ill-posed: there exists an
infinite number of surfaces that could have been generated by a given point-set,

1. Project Introduction 3

especially if there exists noise in the acquisition. The problem is regularised by
imposing so-called priors, constraints that reduce the space of possible solutions.
In this project, we investigate a novel method of surface reconstruction that fuses
a well known local surface smoothness prior with data-driven methods.

1.3 Project Aims & Objectives

The aim of this project is to conduct preliminary work on a novel neural approach
to point-set surface reconstruction based on the moving least squares approxima-
tion framework. The long-term aim is to develop an approximation framework
that is capable of producing high-fidelity reconstruct of 3D natural structures.
However, in this project we restrict our attention to reconstruction of 2D surfaces
from point-sets.

To achieve our aim, we have three objectives we seek to be completed within this
project:

1. Explore and present the underlying theory of both surface reconstruction
and the novel reconstruction approach, namely the areas: differential ge-
ometry, least squares function approximation, and MLP neural networks.

2. Explore current state-of-the-art approaches to surface reconstruction, and
implement several approaches to act as benchmark methods.

3. Implement the novel approach to surface reconstruction in 2D and evaluate
it against the benchmark approaches from the previous objective.

1.4 Contributions

The principle contributions of this project, which we present in this thesis are:

1. The development of a novel 2D point-set dataset and dataset creation
pipeline called the Shapeset dataset (Chapter 5).

2. The development of a 2D point-set reconstruction library PyPointset,
which implements three different approaches to point-set reconstruction
(Chapter 6).

3. The preliminary development of our novel surface reconstruction approach
(Chapter 7).

1. Project Introduction 4

1.5 Report Structure

The thesis is split into 8 Chapters. In Chapter 2, we provide a brief introduction
to differential geometry and implicit surfaces; these topics theoretically underpin
the project. Then, in Chapter 3 we introduce two forms of function approxi-
mators: we study the least squares function approximation, with a particular
emphasis on the moving least squares framework. Then, we also introduce the
multi-layer perceptron (MLP) neural network and the method by which MLPs
are trained. In Chapter 4, we provide the reader with a detailed literature review
of surface reconstruction methods, focusing on methods that use either smooth-
ness priors or data-driven priors to regularise the reconstruction problem. In
Chapter 5, we present the development of a novel 2D point-sets dataset we call
Shapeset. In Chapter 6, we then present the work conducted on building the
PyPointset reconstruction library which provides three benchmark methods for
2D point-set reconstruction. In Chapter 7, we present the initial work conducted
on implementing a novel surface reconstruction method in both 1 and 2 dimen-
sions. Finally, in Chapter 8 we present our final conclusions about the project
and provide the reader with a plan for future work.

1.6 Assumed Knowledge

While every effort has been made to ensure this thesis is self-contained, some
knowledge must be assumed as known. In terms of mathematics, its is expected
that the reader has a confident knowledge of multivariate calculus and linear
algebra such as presented in [7] and [8], respectively.

1.7 A Brief Note On Nomenclature

As the methods we develop in this project will mainly aim at dealing with the
2D case of reconstruction, we use the word point-set to refer to any scattered
set of data-points in Rn, including n = 2, and the word point cloud to referred
explicitly to a point-set in 3D.

Chapter 2

Differential Geometry

In this Chapter, we provide the reader with the preliminary theoretical knowledge
needed to understand the ensuing Chapters within this report. In Section 2.1, we
briefly introduce the concept of a manifold surface, before introducing some of the
useful differential properties that can be defined under the differential geometry
framework.

Differential geometry is the mathematical framework used to describe surfaces
and their differential properties. While the field of differential geometry is vast,
we concentrate on only a few core ideas within this Chapter. The central notion
we wish to describe with differential geometry is how we can parameterise a
surface such that we can employ ideas from multivariate calculus on the surface.
In this section, we give a brief overview of the concept of a manifold surface, the
object that allows us to employ idea from calculus. Then using this definition,
we will introduce the definition of the tangent plane and the surface normal.

2.1 Manifold Surfaces

The definition of manifold relies critically on the definition of homeomorphism,
therefore, we first introduce the definition of a homeomorphic mapping in Def. 2.1.

Definition 2.1: (Homeomorphism [9]).
A function f : X → Y is a homeomorphism if it satisfies the three following
criteria: (1) f is a bijection, (2) f is continuous, and (3) f−1 is continuous.

The bijective property of a homeomorphism ensures that each point in x ∈ X
has a y ∈ Y such that f(x) = y and f−1(y) = x. Given the definition of a
homeomorphic function, we can then define a manifold surface.

5

2. Differential Geometry 6

Definition 2.2: (Manifold Surface [10]).
A manifold surface M is one that is locally homeomorphic to Euclidean

space: that is, for every x ∈ M, there exists an r > 0 such that an open ball,
Bx(r), centered at x with radius r intersected with M is homeomorphic to
an open disc in Rn.

The geometric intuition of a manifold surface is shown in Fig. 2.1: for every point
on the torus we can define a function that maps from the surface to R2. These
mappings are sometimes referred to as charts, with the collection of all charts
that form the full manifold surface, then referred to as an atlas.

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

M

R2

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

M

Rn

f1 : M ! Rn

f2 : M ! Rn

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

M

Rn

f1 : M ! Rn

f2 : M ! Rn

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

M

Rn

f1 : M ! Rn

f2 : M ! Rn

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

M

Rn

f1 : M ! Rn

f2 : M ! Rn

1

Figure 2.1: Illustration of the concept of a manifold: there exists a homeomorphic
mapping for every point on the manifold M in Rn.

The power of viewing surfaces as manifolds is that we can always define a local
coordinate systems which resembles Euclidean space. Then, the established in-
struments of calculus can be enacted through the mapping, from from Euclidean
space onto the surface.

2.1.1 Differential Properties of Manifolds

A manifold that maps from a surface to Rn is typically referred to as n-manifold.
Suppose we have a 2-manifold embedded in 3 dimensional space (like the torus
in Fig. 2.1), then as there exists a homeomorphic mapping we can form a vector
valued function p(u, v) that maps from R2 to a local neighborhood on the surface.
Local basis vectors pu and pv can then be defined via:

pu =
∂

∂u
p(u, v) and pv =

∂

∂v
p(u, v),

which operate in the Euclidean space. This idea is illustrated in Fig. 2.2. As-
suming that pu and pv are not collinear, the surface normal on the manifold can
then be defined via:

2. Differential Geometry 7

n̂(u, v) =
pu × pv

∥pu × pv∥
. (2.1)

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

M

R2

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

p(u, v)

u

v

pu

pv

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

p(u, v)

u

v

pu

pv

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

p(u, v)

u

v

pu

pv

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

p(u, v)

u

v

pu

pv

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

p(u, v)

u

v

pu

pv

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

p(u, v)

u

v

pu

pv

n̂

1

Figure 2.2: Illustration of the mapping from R2 to the manifold which can be
used to define the local surface normal.

The salient point from this section is that under the assumption the surface we are
interested in is manifold, we can always construct a local coordinate system such
that the surface resembles Euclidean space. Then, from the mapping between
Euclidean space and the surface, differential properties can be defined.

2.2 Implicit Surface

In Chapter 1, we briefly mentioned that our aim is to produce an implicit function
representations of the surface given a point-set. Implicit functions typically have
the domain of the the embedding space of the surface (i.e., R2 in this project) and
codomain of R. Then, the implicit surface is then defined as one of the level-sets
of the implicit function, which we define more precisely in Def. 2.3.

Definition 2.3: (Implicit Surface Definition).
Let S denote an implicit surface, then this surface represents the 0-

isocontour of some unknown implicit function f(x), such that:

S = {x ∈ Rn | f(x) = 0}, (2.2)

with the condition that ∇f(x) ̸= 0 for all x ∈ S.

The final condition of non-zero gradient is important as it is the condition that
ensures the implicit surface is manifold. Using the implicit function theorem [11],
we can state that for each point of the implicit function that has a value of zero

2. Differential Geometry 8

but does not have zero gradient (i.e., f(x) = 0 and ∇f(x) ̸= 0), then locally
to that point the 0 level-set looks like a graph which implies that globally the
surface is manifold.

2.2.1 Signed Distance Function

A common choice for the implicit function f(x) is a signed distance function
(SDF). A signed distance function produces a scalar field, f(x) : Rn → R, such
that for each point x ∈ Rn, the value of the function f(x) gives the signed
geodesic distance to the nearest point on the surface S. This idea is illustrated
for the simple example of the unit circle in Fig. 2.3, where we have used the
convention of inside the surface having negative sign and outside the surface
having positive sign.

-1.0

-0.5

0.0

0.5

1.0

Figure 2.3: Illustration of a signed distance function for the unit circle. Points
outside of the unit circle are positive in sign (blue) and points within the unit
circle are negative in sign (red). The surface of the circle is defined by the white
region where the function is exactly zero.

In this work, we mostly consider implicit surfaces defined by signed distance
functions of the point-sets, and so we provide a more formal definition that will
be used throughout this project.

2. Differential Geometry 9

Definition 2.4: (Signed Distance Function).
Let Ω denote the region of occupied space, with boundary ∂Ω. As Ω ⊂
Rn, a metric space can be defined by Rn equipped with the ℓ2 vector
norm. Then a signed distance function, f(x), is defined by the piece-wise
definition:

f(x) =

{
−d(x, ∂Ω) if x ∈ Ω

d(x, ∂Ω) if x ∈ Ω̄
(2.3)

where,
d(x, ∂Ω) = inf

ω∈∂Ω
∥x− ω∥, (2.4)

and inf refers to the infimum over the set of boundary points.

Chapter 3

Function Approximation

Approximating functions is central to robust point-set surface reconstruction. In
Section 3.1, we provide the reader with an introduction to the ordinary least
squares and the moving least squares function approximation frameworks. Then,
in Section 3.2 we provide a rigorous introduction to neural networks as function
approximates and discuss the effect of layer width and depth on expressivity.

3.1 Least Squares Approximation

Core to implicit surface reconstruction is the technique used to approximate the
implicit function that represents the surface. The least squares approach is a
very common framework for function approximation when the system of equa-
tions is over-determined1, in-part due to being extremely well studied. The least
squares approach also has the advantage of having a number of provable proper-
ties, including the equivalence to the statistical technique of Maximum Likelihood
Estimation (MLE) with a Gaussian likelihood model (i.e., the use of least squares
implies a Gaussian model for observation noise) [12].

In this section, we provide an introduction to the moving least squares frame-
work. Moving least squares (MLS) is central to the approach taken to surface
reconstruction in this project. While least squares is a very common function
approximation framework, we motivate MLS by first introducing ordinary least
squares (OLS). Throughout this section we will make use of a test problem, which
we introduce in section 3.1.1.

1A system of equations is over-determined if there exists more unique equations than there
are unknowns.

10

3. Function Approximation 11

3.1.1 The Test Problem

For simplicity, we will work in 1D. In general, we will suppose that we have a set
S of n data-pairs, which are samples of some unknown function f(x), such that,

S = {(xi, yi) | yi = f(xi) for i = 1, 2, .., n}. (3.1)

In this test example we will use the function f(x) = sin(8x) + sin(6.4x), and we
will let xi =

i
10 for i = {0, 1, ..., 10}. These data-points are plotted in Fig. 3.1.

Given S, our aim is to recover an approximation to f(x), which we denote f̂(x).

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

f(
x
)

Figure 3.1: Shows a dataset of 11 samples from the function f(x) = sin(8x) +
sin(6.4x).

3.1.2 A Note On Basis Functions

The least squares approximation framework provides a criterion for determining
coefficients of some functional, but the form of the functional must be specified.
The choice of the functional to be optimised is very important in determining
the resulting approximation, we will show this in the following sections. It is
common for f̂(x) to be written as a linear combination of basis functions, such
that:

f̂(x) =
∑

i

αiϕi(x), (3.2)

where αi are constants to be determined and ϕi : Rn → R are the basis functions.
The choice of basis function defines the so called function approximation space.

3. Function Approximation 12

A common class of basis functions are the algebraic polynomials such that our
approximation is represented by

f̂(x) = α0 +
N∑

n=1

αnx
n, (3.3)

for some N ∈ N. The algebraic polynomials are a good candidate for basis
functions as Taylor’s theorem shows that any suitably smooth function can be
expressed locally in terms of a linear combination of polynomials [13]. However,
we note there exist many other families of basis function which have different
applications depending upon the problem domain.

3.1.3 Ordinary Least Squares

Ordinary least squares is the most basic form of least squares approximation.
Originally proposed by Legendre in 1805 [14], it continues to be a corner stone
technique in function approximation. The optimisation function is given in
Def. 3.1 below.

Definition 3.1: (Ordinary Least Squares).

Let f̂(x) be the functional, then OLS seeks to optimise the parameters of
f̂(x) with respect to the objective function:

∑

S
∥f̂(xi)− yi∥22. (3.4)

OLS & The Test Problem

To implement OLS for the test problem described in Section 3.1.1, we begin
by selecting the function space (i.e., the functional f̂(x)). To use the algebraic
polynomials defined in Eq. (3.3), we must select the number of polynomial terms
N . As an example, let N = 1; then the approximation function is given by
f̂(x) = α0 + α1x, where we aim to recover the coefficients α0 and α1 from the
scattered data points S.

Formulating the optimisation problem, we wish to minimise the objective function
E given by:

E =
∑

(xi,yi)∈S

[
f̂(xi)− yi

]2
=

∑

(xi,yi)∈S

[α0 + α1xi − yi]
2 , (3.5)

3. Function Approximation 13

which can be viewed as a function of α0 and α1. Differentiating E with respect to
α0 and α1 and equating the resulting expressions to zero allows for the coefficients
α0 and α1 to be determined. The derivative:

∂E

∂α0
= 2

∑

(xi,yi)∈S

[α0 + α1xi − yi] = 0, (3.6)

yields the equation,

nα0 + α1

∑

(xi,yi)∈S

xi =
∑

(xi,yi)∈S

yi, (3.7)

where n defines the number of data-pairs in the set S. Similarly,

∂E

∂α1
= 2

∑

(xi,yi)∈S

[α0 + α1xi − yi]xi = 0, (3.8)

yields the equation,

α0

∑

(xi,yi)∈S

xi + α1

∑

(xi,yi)∈S

x2i =
∑

(xi,yi)∈S

xiyi. (3.9)

To efficiently solve Eq. (3.7) and Eq. (3.9), to find the coefficients α0 and α1, it
is helpful to employ linear algebra. Rewriting Eq. (3.7) and Eq. (3.9) in matrix
vector form [

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x

2
i

][
α0

α1

]
=

[∑n
i=1 yi∑n

i=1 xiyi

]
, (3.10)

the coefficients can be easily found by computing the matrix inverse, such that
[
α0

α1

]
=

[
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

]−1[∑n
i=1 yi∑n

i=1 xiyi

]
. (3.11)

Having found the coefficients α1 and α2, the approximation defined by f̂(x) =
α0+α1x can be plotted; this is shown in Fig. 3.2 in orange. The same procedure
can be repeated for any finite number of polynomial terms. Fig. 3.2 also shows
the OLS approximation for N = 2 in blue , N = 3 in green, and N = 4 in purple.
We note that as we increase the number of polynomial terms (i.e., the number of
degrees of freedom), the residual error between the approximation and the data
appears to decreases.

3.1.4 Moving Least Squares

One of the problems of the OLS approach is it performs global optimisation; the
approximation coefficients are assumed to be independent of the spatial location.

3. Function Approximation 14

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
f(
x
)

Π1
1

Π1
2

Π1
3

Π1
4

Figure 3.2: Plot shows the OLS approximation to the test problem described in
section 3.1.1 using 4 different sets of basis functions. The compact polynomial
notation used in the legend Πd

n defines the nth degree polynomial in d dimensions,
that was used as the functional basis.

This, in-part, explains why higher degrees of freedom appear to lead to higher
quality reconstructions under OLS. The core idea of MLS is to remove the re-
quirement for the coefficients to be constant over the entire domain and instead
let them vary, with the optimisation problem localised via a weight function. We
give the definition of MLS optimisation below.

Definition 3.2: (Moving Least Squares).
Let f̂(x) be the functional to be optimised, then for each x in the approx-
imation domain, the objective function is given by:

∑

i

∥f̂(xi)− yi∥22w(x, xi), (3.12)

where w(x, xi) is the weighting function. In this project, we will exclusively
consider w(x, xi) to be the stationary un-normalised Gaussian defined by

w(x, xi) = exp

(
−∥x− xi∥22

σ2

)
. (3.13)

A very important consideration of the above definition is the choice of the vari-
ance, σ2, of the Gaussian weighting term. The variance effectively controls the

3. Function Approximation 15

spread of the weighting distribution, with higher variances giving a wider spatial
weighting (see Fig. 3.3).

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

xi

0.0

0.2

0.4

0.6

0.8

1.0

w
(0
,x

i)

σ= 0.1

σ= 0.2

σ= 0.3

Figure 3.3: Shows three weighting terms w(x, xi) centered at 0, with different
values of σ. Note that the larger the value of σ, the larger the spread of the
weight distribution.

Vector Space Approach

Having introduced the MLS objective function, we now show how MLS can be
implemented efficiently using linear algebra. Using matrix-vector notation, the
functional represented by a linear combination of basis functions can be expressed
in the form

f̂(x) = b(x)Tα(x) (3.14)

where b(x) = [b0(x), b1(x), · · · , bm(x)] and α(x) = [α0(x), α1(x), · · · , αm(x)]T .
The objective function defined in Eq. (3.12), at a set-point x, can then be written
in matrix-vector form such that we minimise

J = (Bα(x)− y)TW (Bα(x)− y) (3.15)

where B is defined as:

B = [b(x1), b(x2), ..., b(xn)]
T , (3.16)

3. Function Approximation 16

which expands to give the matrix definition,

B =

b0 (x1) b1 (x1) · · · bm (x1)
b0 (x2) b1 (x2) · · · bm (x2)

...
...

...
b0 (xn) b1 (xn) · · · bm (xn)

 . (3.17)

The vector y is defined as,

y = [y1, y2, . . . , yn]
T , (3.18)

and W (x) is defined as,

W (x) =

ω (x− x1) 0 · · · 0
0 ω (x− x2) · · · 0
...

...
...

0 0 · · · ω (x− xn)

 . (3.19)

Then letting A(x) = BTW (x)B and C(x) = BTW (x), the matrix-vector objec-
tive function in Eq. (3.15) can then be differentiated with respect to the coefficient
vector α(x) such that,

∂J

∂α
= A(x)α(x)−B(x)y = 0, (3.20)

which rearranges to give the matrix equation,

A(x)α(x) = C(x)y. (3.21)

Then assuming that the matrix A(x) is not singular, the coefficients can be
efficiently found via inverting the matrix such that

α(x) = [A(x)]−1C(x)y. (3.22)

Hence, the approximation at each x is defined by,

f̂(x) = b(x)T [A(x)]−1C(x)y. (3.23)

MLS & The Test Problem

We now present the MLS approximation to the test problem stated in Sec-
tion 3.1.1. Again, like OLS, we opt for a simple linear functional of the form
f̂(x) = α0(x) + α1(x)x, where α0(x) and α1(x) are now also functions of the
spatial variable x. Solving Eq. (3.23) with four different values of σ2, we yield

3. Function Approximation 17

four approximations which are presented in Fig. 3.4. As MLS blends together
Gaussian weighting terms, even know the functional was of a linear form, the
resulting approximation can be highly non-linear; this is different from the OLS
case where a linear function guarantees the approximation will also be linear.

The asymptotic behaviour of the σ2 parameter is clear from Fig. 3.4, where small
values of σ2 lead to the interpolation of the data-points, in this case with piece-
wise linear function. Moreover, larger values of σ2 effectively reduces the MLS
framework to that of OLS presented in Section 3.1.3. Clearly, there then exists
an optimal value of σ2 which produces the best approximation in terms of the
smallest error; hand tuning this parameter, σ2 = 0.08 appears to yield the best
result.

3.
F
u
n
c
t
io

n
A

ppro
x
im

at
io

n
18

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
f̂(
x
)

σ2 = 0.04

0.0

0.2

0.4

0.6

0.8

1.0

W
(x

q
,x

)

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

f̂(
x
)

σ2 = 0.08

0.0

0.2

0.4

0.6

0.8

1.0

W
(x

q
,x

)

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

f̂(
x
)

σ2 = 0.30

0.0

0.2

0.4

0.6

0.8

1.0

W
(x

q
,x

)

0.0 0.2 0.4 0.6 0.8 1.0

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

f̂(
x
)

σ2 = 2.00

0.2

0.4

0.6

0.8

1.0

W
(x

q
,x

)

Figure 3.4: Shows approximations under the MLS framework, with varying spatial weighting variance. The weight function is
plotted at three locations on the domain, and the linear approximation at those location, treating α as constant, is also plotted.
We note the asymptotic behaviour of the approximation: As σ → 0, the function interpolates the points with piece-wise linear
regions. Similarly, as σ → ∞, the MLS framework reduces to OLS and a linear fit is obtained.

3. Function Approximation 19

3.2 Neural Networks for Function Approximation

The final topic we consider in this Chapter is neural networks for function ap-
proximation. This Chapter introduces the multi-layer perception (MLP), a fully-
connected feed-forward neural network, and introduces the framework by which
they are trained. The concept of an MLP for function approximation is very
similar to the ideas of function approximation introduced in the previous Sec-
tion, however, where the function space in OLS was defined by a handful of
parameters, MLPs typical have very large numbers of parameters (e.g., tens of
thousands) which are learned via training. This large parameter space can give
rise to expressive function approximators, and in the later part of this Section we
will seek to develop a heuristic approach to understand expressivity via network
architecture selection. The work in this Section builds upon the work originally
presented in [15].

3.2.1 Introduction to Neural Networks

An MLP consists of neurons that are arranged into layers, the particular arrange-
ment of neurons in these layers is what we referred to as the network architecture.
Each of the neurons is modelled as activation functions σ : R → R. Previous
literature provides may candidates for these activation function [16, 17, 18] (for a
comprehensive review see [19]), depending on the type of problem being tackled.
In this project we will make use of the rectified linear activation unit (ReLU)
which is defined by

σ(z) = ReLU(z) =

{
x x > 0,

0 x ≤ 0,
= max(0, x). (3.24)

The ReLU activation function has a number of nice properties: The derivative is
simple to compute being either 0 or 1, depending upon the value of x. The ReLU
activation function has been extensively studied in-terms of its expressivity and
the functions spaces it can represent, these ideas will be explored in Section 3.2.4.

3.2.2 Evaluating the MLP

Before we continue we must first introduce some notation. Throughout this
section we make use of the notation introduced in [20], other than we opt for
a zero-based counting system. Let L represent the number of layers within our
network, then we index each layer with a zero-based layer number, l, such that
l ∈ {0, 1, ..., L− 1}. Similarly, let Nl represent the number of neurons at layer l,
then we index each neuron of the layer with nl ∈ {0, 1, .., Nl − 1}. This notation
allows us to write the input to the jth neuron at layer l as z

[l]
j and the output

3. Function Approximation 20

of the jth neuron at layer l as a
[l]
j . We relate the input and output using the

previously defined activation function such that:

a
[l]
j =

{
xj for j = 0, .., nl if l = 0

σ
(
z
[l]
j

)
for j = 0, .., nl if l = 1, .., L− 1.

(3.25)

Note that the input at layer 0 is given by the input vector x. An example MLP
is shown in Fig. 3.5 which consists of one input layer of two neurons, one output
layer of one neuron and two hidden layers each with three neurons.

0 1 2 3

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

Your Paper

You

September 1, 2022

Abstract

Your abstract.

1 Introduction

Input Layer

Hidden Layer

Output Layer

Layer Number

Scalar Output

0

1

2

3

x1 = a0
0

x2 = a1
0

z1
0

a0
1

z1
1

a1
1

z2
1

a2
1

z2
0

1

a2
0

z2
1

a2
1

z2
2

a2
2

z3
0

a3
0

2

a2
0

z2
1

a2
1

z2
2

a2
2

z3
0

a3
0

2

a2
0

z2
1

a2
1

z2
2

a2
2

z3
0

a3
0

2

a2
0

z2
1

a2
1

z2
2

a2
2

z3
0

a3
0

2

a2
0

z2
1

a2
1

z2
2

a2
2

z3
0

a3
0

2

a2
0

z2
1

a2
1

z2
2

a2
2

z3
0

a3
0

2

a2
0

z2
1

a2
1

z2
2

a2
2

z3
0

a3
0

2

Figure 3.5: Fully connected MLP with 4 layers: one input layer, one output layer
and two hidden layers. The input layer consists of two inputs x = (x1, x2) and
the output is a single scalar value. z

[l]
j and a

[l]
j represent the input and output of

the jth neuron on the lth layer, respectively.

Of course, as can be seen from Fig. 3.5, if a layer has more than one neuron
within it, the next layer will have more than one scalar input terminating at its
neurons and so we must introduce a way of combining these inputs into a single
scalar value. We form the inputs of z

[l]
j as a biased linear combination of the

outputs in layer l − 1 such that:

z
[l]
j =

nl−1∑

k=0

(
w

[l]
jka

[l−1]
k

)
+ b

[l]
j for l = 1, 2, .., L− 1 j = 0, ..., Nl − 1. (3.26)

where w
[l]
jk are the weights and b

[l]
j is the biases at layer l. The weights and biases

are then initialised. In this work we use a random initialisation at the beginning
of training. While the network is trained, the weights and biases are adjusted,
and once training has concluded they remain fixed thereafter. To compact the
notation, we may write b[l] ∈ Rnl as the vector of biases and W [l] ∈ R[nl]×R[nl−1]

3. Function Approximation 21

as the matrix of weights at layer l, such that Eq. (3.26) may be written as

z[l] = W [l]a[l−1] + b[l]. (3.27)

where z[l] ∈ Rnl is the vector of inputs at layer l. Similarly, by forming a vector
of outputs a[l] ∈ Rnl we may rewrite Eq. (3.25) using Eq. (3.27) to find:

a[l] =

{
x if l = 0

σ
(
W [l]a[l−1] + b[l]

)
if l = 1, .., L− 1.

(3.28)

where σ(·) is Eq. (3.28) is understood to act on each component of its vector
input independently. This is referred to as the feed-forward algorithm; given the
weights and biases this allows us to propagate an input x through the network
and find its output. The weights and biases are found by training the network,
which we will discuss in the next subsection.

3.2.3 Training the MLP

In this Section we will look how we determine the optimum weights and biases
for our network through training. Training a neural network requires we define
a loss function, similar to how we defined objective functions for OLS and MLS.
We must also define the method of optimisation, which is typically a gradient
descent based method. Finally, we use the back-propagation algorithm to update
the weights and biases within the network.

The Loss Function

In this project, we consider only the supervised paradigm of machine learning; by
supervised training, we mean that we provide the network with a set of training
examples, xi ∈ {x1,x2, ...,xN}, and corresponding labels yi ∈ {y1,y2, ...,yN}
and we aim to minimise some loss function. As the MLPs we consider in this
project are working in coordinate space, a sensible first choice for our cost function
is the squared ℓ2 norm

C =
1

N

N∑

i=i

1

2
||yi − a[L−1](xi)||22 (3.29)

where N is the number of training examples. By noting that the argument of the
ℓ2 norm is a function of all the weights and biases of the network we may write

C = C(P), (3.30)

where P =
(
W [1], ..,W [L−1],b[1], ...,b[L−1]

)
is a vector of all the weights and

biases in the network. It is our aim to find P such that C(P) is minimised.

3. Function Approximation 22

Stochastic Gradient Descent

In order to solve this optimisation problem we will make use of the stochastic
gradient decent (SGD) algorithm; we first introduce the gradient decent algo-
rithm and then we will show how it can be modified for efficiency.

The initialisation of the parameters P, defines some cost C(P). Our aim is to
construct a new vector P+∆P such that C(P+∆P) is minimised. By performing
a first order Taylor expansion we find

C(P +∆P) ≈ C(P) + (∇C(P)) ·∆P (3.31)

where ∇ is the gradient operator that acts over each component of C(P). Then
via the Cauchy-Schwartz inequality we find that an appropriate ∆P is given by

∆P = −η∇C(P) (3.32)

where η is the learning rate, which affects the rate of convergence. From Eq. (3.32)
we yield our update rule for P as

Pi+1 = Pi − η∇C(Pi) (3.33)

where i refers to the iteration number; this is the gradient decent algorithm.
Computing ∇C(P) at every iteration, for every element in the training set, can
be costly and so we introduce stochastic gradient decent [21]; by selecting a single
training point at random the update rule becomes:

Pi+1 = Pi − η∇Cxi(Pi), (3.34)

where,

Cxi(Pi) =
1

2
||yi − a[L−1](xi)||22. (3.35)

While this significantly reduces the computational expense, SGD is still able to
converge to local minima in the loss space, providing approximation of the best
parameters P.

Back-propagation algorithm

In order to use the SGD algorithm introduced in the previous section we must in-
troduce a method of evaluating ∇Cxi , the derivative of the cost function with re-
spect to each of the weights and biases; we achieve this using the back-propagation
algorithm. We begin by defining a quantity called the error

δ
[l]
j =

∂Cxi

∂z
[l]
j

for 0 ≤ j ≤ Nl − 1 and 1 ≤ l ≤ L− 1, (3.36)

3. Function Approximation 23

that is the derivative of the loss function at data point i with respect to the zth

input to the jth neuron at layer l. Using the definition of the activation function
from Eq. (3.25), for l = L − 1, and differentiating with respect to z

[L−1]
j we can

shows that,

∂a
[L−1]
j

∂z
[L−1]
j

= σ′(z
[L−1]
j). (3.37)

Now by considering the derivative of the cost function given in Eq. (3.29), for a
fixed training point, with respect to a

[L−1]
j we may show,

∂Cxi

∂a
[L−1]
j

=
∂

∂a
[L−1]
j

Nl−1∑

k=0

1

2

(
yk − a

[L−1]
k (xk)

)2
= −(yj − a

[L−1]
j). (3.38)

Then, by re-expressing the error using the chain rule, we find

δ
[L−1]
j =

∂Cxi

∂z
[l]
j

=
∂Cxi

∂a
[L−1]
j

∂a
[L−1]
j

∂z
[L−1]
j

= (a
[L−1]
j − yj)σ

′(z
[L−1]
j), (3.39)

and hence
δ[L−1] = (a[L−1] − y) ◦ σ′(z[L−1]), (3.40)

where ◦ represents a component-wise product. Now by making use of the feed-
forward algorithm in Eq. (3.28) we can show:

δ[l] = σ′(z[l]) ◦ (W [l+1])Tδ[l+1] for l = 1, 2, .., L− 2. (3.41)

Although we do not present the formal proof here2, it is then possible to show
the components of ∇Cxi may be written in terms of the quantity δ[l] via

∂Cxi

∂b
[l]
j

= δ
[l]
j , and

∂Cxi

∂W
[l]
jk

= δ
[l]
j a

[l−1]
k ,

for l = 1, 2, .., L− 2.

3.2.4 Neural Network Approximation Power

Having introduced neural networks and the framework necessary to train them to
obtain the optimal weights and biases, this final Section will consider what func-
tions a neural network can represent and introduce some heuristic principles for
architecture selection. We begin with the universal function approximation the-
orem, which underpins the theoretical use of neural networks. We then consider
the effect of layer width and layer depth on the function space produced.

2A formal proof is presented in [20] on page 12.

3. Function Approximation 24

Universal Function Approximation

One motivating reason for using neural networks for function approximation is
that they can represent any continuous function f(x); this result, first introduced
in the 1980’s, is known as the universal function approximation theorem [22] and
we present it below.

Theorem 3.1: (Universal Function Approximation).
Let f(x) be a continuous function with compact support on the domain
Rn. Then, for all ϵ > 0 there exists an M ∈ N such that

|f̂(x)− f(x)| < ϵ (3.42)

where f̂(x) is given by

f̂(x) = W [2]σ
(
W [1]x+ b[1]

)
(3.43)

where W [1] ∈ Rn×m and W [2] ∈ Rm×1, and all other notation is as presented
in section 3.2.2.

While a detailed proof of Theorem 3.1 is beyond the scope of this report (the
interested reader can find more detail in [22]), we provide the reader with a sketch
proof of the theorem to highlight the intuitive idea.

The definition of the universal function approximator, as presented in Theo-
rem 3.1, uses a single hidden layer. Using a single hidden layer leads to a piece-
wise linear function definition as the output; this can be seen by observing that
ReLU activation functions are, in a sense, piece-wise linear functions and so a
piece-wise linear transformation of a linear combinations of inputs, leads to a
piece-wise linear output. Furthermore, the number of linear regions scales ap-
proximately linearly with the number of hidden units (i.e., number of linear
regions is O(N), where N is the number of hidden units); this behaviour can be
seen in the three example networks plotted in Fig. 3.6. The proof of the universal
function approximation follows naturally from this observation: as the number
of hidden nodes asymptotically tends to infinity, the length of linear regions tend
towards zero, leading to point-wise convergence to any suitably smooth function.

With advances in hardware accelerators, neural networks have seen a trend of
increasing layers, in so-called deep-learning [23]. A natural question, given that
the universal function approximation theorem uses a single layer neural network,
is why go deeper? In short, the answer is that deep neural networks can out-
perform shallow ones in their expressivity [24]: to understand why, we introduce
the so-called saw-tooth network [25]. Consider the following recursively defined

3. Function Approximation 25

-4 -3 -2 -1 0 1 2 3 4
x

0

2

4

6

8

R
eL

U
(W

[1
] x

+
b

[1
])

3 Hidden Nodes

-4 -3 -2 -1 0 1 2 3 4
x

-25

-20

-15

-10

-5

0

f̂(
x
)

-4 -3 -2 -1 0 1 2 3 4
x

0

2

4

6

8

10

12

14

R
eL

U
(W

[1
] x

+
b

[1
])

6 Hidden Nodes

-4 -3 -2 -1 0 1 2 3 4
x

0

10

20

30

40

f̂(
x
)

-4 -3 -2 -1 0 1 2 3 4
x

0

2

4

6

8

10

12

14

R
eL

U
(W

[1
] x

+
b

[1
])

10 Hidden Nodes

-4 -3 -2 -1 0 1 2 3 4
x

20

25

30

35

40

45

50

55

f̂(
x
)

Figure 3.6: Figure shows the output of three neural networks with a single hidden
layer but varying hidden nodes. We note that the output function is made of
piecewise linear regions.

function

fl(x) =

{
2|fl−1(x)| − 2 l > 0

x l = 0
(3.44)

which can be expressed in-terms of a network with two nodes in each layer l such
that

fl(x) =

{
2max(0, fl−1(x))− 1 + 2max(0,−fl−1(x))− 1 l > 0,

x l = 0.
(3.45)

We can then consider the effect of changing the number of layers, l, on the function
output; the results are plotted in Fig. 3.7. When there is 0 layers, the output of

3. Function Approximation 26

the network is linear as expected and when there is 1 layer we have two linear
regions. Increasing the number of layers l then demonstrates an exponential
increase in the number of linear regions, such that the number of linear regions
is O(2l).

-2 -1 0 1 2
x

-2

-1

0

1

2

f 0
(x

)

0-layers

-2 -1 0 1 2
x

-2

-1

0

1

2

3

f 1
(x

)

1-layers

-2 -1 0 1 2
x

-2

-1

0

1

2

3

4

f 2
(x

)

2-layers

-2 -1 0 1 2
x

-2

-1

0

1

2

3

4

5

6

f 3
(x

)

3-layers

-2 -1 0 1 2
x

-2

0

2

4

6

8

10

f 4
(x

)

4-layers

-2 -1 0 1 2
x

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

f 5
(x

)

5-layers

Figure 3.7: Figure shows the output of the sawtooth network, defined by
Eq. (3.45), at differing numbers of layers l.

From the underpinning ideas of the universal function approximator, clearly hav-
ing more linear regions in the output is better for representing higher complexity
function with smaller error. While the analysis we present here is simplistic in
nature, it provides a key insight into how ReLU network architectures change
the resulting approximation space. In particular, fewer network parameters are
needed to learn complex function when nodes are stacked into deeper layer com-
pared with shallow and wide networks. We will use this heuristic in Chapter
7, when we implement an MLP to represent basis functions of the MLS surface
reconstruction.

Chapter 4

Literature Review

As previously discussed, surface reconstruction from point-sets is mathemati-
cally ill-posed: there exists an infinite number of surfaces that can pass through,
or near, a given set of scattered data-points. To make progress, the problem
is regularised by imposing some form of prior as a constraint. Over the past
three decades there have been numerous priors suggested in literature like surface
smoothness, volume smoothness, and global regularity; see [26] for a comprehen-
sives survey of reconstruction priors.

In this chapter we will concentrate on the surface smoothness class of prior: that
is, methods that constrain the optimisation of the reconstructed surface to satisfy
a certain level of continuity in the differential properties of the surface on a local
scale, while ensuring that the surface is a close fit to the point-set. The prior of
surface smoothness can be broken down into two sub-classes: local smoothness
and global smoothness. In Sections 4.1 and 4.2, we provide a comprehensive review
of methods that fall into these two categories, respectively. Then, in Section
4.3, we move attention away from hand-crafted smoothness priors to provide a
discourse on methods that leverage data-driven techniques. Finally, in Section
4.4 we conclude with a comparative summary of the techniques considered within
this chapter. The work in this Chapter is based on, and constitutes an extended
version of, the previously conducted literature review [27].

4.1 Local Smoothness

Local smoothness strives for smoothness only in close proximity to each point
within the point-set. The local surface smoothness prior tends to smooths out
noise in the acquired point-set, but typically cannot handle severe artifacts or
highly non-uniform sampling.

27

4. Literature Review 28

4.1.1 Tangent Projection Methods

The pioneering method introduced in [28], laid the groundwork for many subse-
quent methods that imposed local smoothness priors. The method approximated
the surface as a signed distance function Φ : Rn → R by projecting each point
x ∈ Rn onto the tangent plane of the closest point within the point-set. Construc-
tion of the tangent plane for each point of the point-set requires that orientated
surface normals be also supplied at each point, which are typically approximated
using statistical techniques like principle component analysis (PCA) [29]. While
this approach is efficient and simple to implement, without any form of smooth-
ing in the approximation scheme the method is sensitive to errors in the surface
normal estimations. We illustrate this idea in Fig. 4.1, by reconstructing points
sampled from the unit circle but with varying amounts of Gaussian additive noise
on the surface normal vector: Gaussian noise with variance of 0.25 results in a
saw-tooth effect in the implicit surface, while variance of 0.5 results in a very
poor surface reconstruction.

-2 -1 0 1 2
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
No Noise

-2 -1 0 1 2
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
N(0, 0.25)

-2 -1 0 1 2
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
N(0, 0.50)

Figure 4.1: Shows the tangent plane surface reconstruction method for the unit
circle with varying variances of additive Gaussian noise on the surface normal
estimation.

Furthermore, under real scanning condition where the point-set sampling pattern
is unlikely to be uniform, the definition of closest point on the manifold surface
can also become ill-defined, leading to noisy reconstruction outputs. We illustrate
this in Fig. 4.2, where we present the construction of the unit circle with both
uniform and non-uniform sampling patterns. Under a uniform sampling distribu-
tion of twenty points, the surface generated is relatively smooth, however, under
non-uniform sampling the resulting reconstruction contains sharp edges.

Subsequent methods based on local surface smoothness prior have since focused
on addressing such issues, mainly by incorporating techniques that help to smooth-
out noise in acquired point-sets.

4. Literature Review 29

-2 -1 0 1 2
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Uniform Distribution

-2 -1 0 1 2
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Non-uniform Distribution

Figure 4.2: Shows the tangent plane surface reconstruction method for the unit
circle under different sampling distributions. When the sampling distribution is
non-uniform, the resulting distribution is non-optimal.

4.1.2 Moving Least Squares (MLS)

The MLS approach is a prominent method for function approximation of discrete
sets of points, which have associated scalar quantities [30]; we provide a detailed
introduction to this approximation technique in the previous Chapter (see Sec-
tion 3.1.4). The initial pioneering work on using the MLS framework for the
reconstruction of manifolds was conducted by Levin [31], with Alexa et al being
the first to explicitly use MLS for applications in the field of computer graphics
[32].

The MLS framework is appealing for surface reconstruction of point-sets because
under mild conditions it carries provable properties. Given a densely enough
sampled point-set, it can be proven that the approximation produced is a good
approximation to a signed distance function, and that the reconstructed surface
is geometrically and isotropically close to the sampled surface [33]. We note that
theoretical guarantees, like those provided in [33], are one of the main attractors
for employing MLS for surface reconstruction.

While all MLS approaches to surface reconstruction fundamentally implement
the local optimisation problem introduced in Section 3.1.4, there exists many
variants in the specific approach. In the next subsections we will explore several
variants of MLS. We will begin with the original Levin projection method [31];
while it has become uncommon for this approach to be used in practice for sur-
face reconstruction, it serves as an excellent pedagogy tool for introducing the
underpinning idea of MLS for manifold reconstruction. We will then consider
several methods that employ MLS for manifold reconstruction, including current
state-of-the-art approaches.

4. Literature Review 30

Levin Projection Method

The initial approach to using MLS for manifold reconstruction [31] was broken
into two stages:

1. First a query point is selected around which the approximation will be
made, and a local reference plane is fitted to the point-set within a local
neighborhood of the query point. The reference plane provides a local
coordinate system on which the approximation can be constructed. Then
the scalar values s(p) for each point are constructed as the smallest distance
from the point to the local reference plane. Under this formulation it is easy
to see that the scalar values associated with each point represent nothing
more than the height field to the reference plane.

2. Secondly, the approximation f̂(x) is found via solving the local optimisa-
tion problem presented in Def. 3.2, such that the coefficients of a linear
combination of polynomial basis are found.

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

Local reference plane

Query point

n̂j

f̂(x)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

Local reference plane

Query point

n̂j

f̂(x)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

Local reference plane

Query point

n̂j

f̂(x)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

Local reference plane

Query point

n̂j

f̂(x)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

Local reference plane

Query point

n̂j

f̂(x)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

Local reference plane

Query point

n̂j

f̂(x)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

Local reference plane

Query point

n̂j

f̂(x)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

pi

pj

s(pi)

s(pj)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

pi

pj

s(pi)

s(pj)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

pi

pj

s(pi)

s(pj)

1

Your Paper

You

September 6, 2022

Abstract

Your abstract.

1 Introduction

pi

pj

s(pi)

s(pj)

1

Figure 4.3: Illustrates the Levin projection method for surface reconstruction at
a single point. Given a point-set, a local reference plane is constructed around a
query point: this defines a height field for all other neighboring points s(p). Then
MLS optimisation is then carried out to find the coefficients of a parameterised
function f̂(x).

The Levin projection method for a single point is illustrated in Fig. 4.3. The
above procedure is then repeated for different query points, and the surface is
formally defined as the subset of all points in Rn that project onto themselves.

The Levin projection approach has two main limitations: firstly, the construction
of a local reference plane becomes problematic when the point cloud is sparse or
when the local neighborhood is near sharp features (e.g., a corner). Secondly, this
approach is relatively expensive to compute, essentially requiring the solution to
two optimisation problems, the plane fitting and the local MLS optimisation, at

4. Literature Review 31

each step.

Scalar Field Approximation

It was quickly observed that the Levin projection method could be vastly simpli-
fied via omission of the local reference plane fitting [34], and instead associating
the point-set with the zero level-set of the scalar field (i.e., s(pi) = 0 ∀ pi ∈ P).

Of course, taking this approach requires further constraints be placed on the
optimisation problem to avoid the trivial solution (f̂(x) = 0 ∀x ∈ Rn). If
the point-set is oriented, then conditions can be placed on the gradient of the
approximated function ∇f̂(x) such that it is aligned with the surface normal’s;
this was the approach taken in [35] and [34]. Alternatively, the optimisation can
be constrained via the Eikonal equation where the norm of the gradient of the
implicit function is constrained to be 1 over all of space. In the context of surface
reconstruction, inclusion of the Eikonal term has been used for the MLS optimi-
sation of planes [36] and sphere [37] for surfaces reconstruction.

Implicit MLS

Another variant of the MLS approach is called Implicit MLS (IMLS)[38], which
reduces the function approximation space of f̂(x) to tangent planes. Assuming
the point-set is oriented, then the signed distance function can be written in
closed form as

f̂(x) :=

∑
pi∈P ⟨x− pi,ni⟩ · ω (∥x− pi∥)∑

pi∈P ω (∥x− pi∥)
, (4.1)

where ω(·) is the MLS weighting function and ⟨·, ·⟩ represents the vector inner-
product. IMLS is an attractive approach to surface reconstructions due to the
simplicity of its formulation. However, without a global optimization step, it
was found that this approach suffers from expanding and shrinking of the surface
away from the input points [37]. Furthermore, with the approximation space
only constructed via tangent planes, IMLS can struggle with representing high
frequency features, tending to produce overly smooth approximations. In Sec-
tion 6.1.1, we will explore the IMLS approach in more detail and provide a full
derivation of Eq. (4.1).

4. Literature Review 32

Robust IMLS

One of the limitations of employing the MLS framework for surface reconstruction
is that it assumes that points are sampled from a smooth surface, which inher-
ently makes the framework sensitive to outliers and increases the difficulty in
recovering high frequency spatial details. In [39], Öztireli introduces the RIMLS
method, which uses concepts from the field of robust statistics [40] to overcome
these challenges. The method builds upon the IMLS approach but is able to
discount outliers by iteratively reweighting points based on their spatial and nor-
mal residual errors. The authors showed that their approach could produce far
better reconstructions of sharp features, like corners and edges, when compared
with the original IMLS formulation; this leads to more faithful surface approxi-
mations. While the approach is over a decade old, it still provides a baseline for
state-of-the-art in a number of recent papers like [41].

4.2 Global Smoothness

In contrast to the local smoothness prior, global smoothness seeks higher order
smoothness, large-scale smoothness, or both. Higher order smoothness refers
to the smoothness in the differential properties of the geometry, like the tan-
gent planes or curvature, while large-scale refers to the spatial extend to which
smoothness is enforced [1].

4.2.1 Radial Basis Function

One well known method of global scattered data interpolation is radial basis func-
tions. First introduced in [42], radial basis functions for surface reconstruction
are constructed via finding a signed field defined via RBFs whose zero level set
represents the surface. Globally supported basis function ϕ : R+ → R are used
to find an implicit function:

Φ(x) = p(x) +
∑

pi∈P
λiϕ(∥x− pi∥), (4.2)

where p(x) denotes a low-degree polynomial, and the basis functions are centered
at the points pi within the point-set. Some common RBFs include thin-plate
splines ϕ(x) = x2 log(x), Gaussian ϕ(x) = exp(−cx2), and multiquadric ϕ(x) =√
x2 + c2, which are plotted in Fig. 4.4 for c = 1.

Like the scalar field approximation methods mentioned in Section 4.1, RBFs are
typically used to regress SDFs. Again, to prevent the trivial solution (Φ(x) =
0 ∀x ∈ R), value constraints are enforced for off surface points, where Φ(xi +
ϵni) = ϵ for some small value ϵ.

4. Literature Review 33

0 2 4 6 8 10

0

50

100

150

200

φ(x) = x2log(x)

-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

φ(x) = exp(−x2)

-10 -5 0 5 10

2

4

6

8

10

φ(x) =
√
x2

Figure 4.4: Shows common kernel functions used in RBF regression: left is the
thin-plate splines ϕ(x) = x2 log(x), center is the Gaussian ϕ(x) = exp(−cx2),
and right is the multiquadric ϕ(x) =

√
x2 + c2, with c = 1

The real advantage of using the global smoothness prior, like RBF regression,
is that the reconstructed surface produced must be globally smooth and hence
watertight1.

4.2.2 Poisson Reconstruction

Until this point, each of the implicit function we have considered has approxi-
mated a signed distance function, however, this is not the only choice. There are
another class of implicit functions that use the idea of an indicator function to
encode the shape boundary; in this work we define an indicator function by the
piece-wise definition

Φ(x) =

{
1 x ∈ Ω,

0 x ∈ Ω̄,
(4.3)

where Ω is a set that represents the occupied area of space. Reconstruction
of Φ(x), given only a point-set is of course ill-posed; the problem is further
constrained by ensuring that the gradient of the implicit function and the surface
normals of the point-set align (see Fig. 4.5). This leads to a quadratic error
optimisation function

argmin
Φ

∫
∥∇Φ(x)− n̂(x)∥22 dx. (4.4)

where n̂(x) is the unit surface normal estimate at x. The solution to Eq. (4.4)
is described by the solution to a Poisson problem, applying calculus of variation,
the problem is minimised when:

1Watertight is a term used in computer graphics to mean that the surface is closed without
holes.

4. Literature Review 34

Figure 4.5: Illustration of the indicator function approximation process: Given
the input point-set, the gradient of the scalar field Φ can be found and this is
used to optimise the coefficients of the field by comparison with the point-set
surface normals.

∇2Φ(x) = f(x), (4.5)

where f(x) = ∇ · n̂(x). Solving the Poisson problem, with the boundary condi-
tions of Φ(x) = 0 on the boundary, then yields the implicit function Φ(x), from
which the surface can be recovered by selection of an appropriate iso-value.

The original work framing surface reconstruction as a Poisson problem was pre-
sented in [43], where the Poisson problem was solved by transforming into the
frequency domain, via a Fourier transform, which resulted in a simple algebraic
solution for the Fourier representation of Φ. The problem with this approach is
that the application of the Fast Fourier Transform algorithm, used to perform
the discrete Fourier transform, requires space be meshed into a uniform grid,
which in-turn limits the spatial resolution of the output. Alternative approaches
to solve the Poisson problem in the spatial domain using a multilevel, course-to-
fine, grid approaches have since been proposed [44] which provide a significant
efficiency improvement.

Like the RBF approach, indicator function methods offer a globally smooth so-
lution to the surface, however, as noted in [45] Poisson reconstruction can often
lead to over-smoothing of surface; this behaviour is evident in Fig. 4.6.

To overcome this over-smoothing, [45] introduced additional position constraints
into the optimisation problem. This later became known as a screened Poisson
reconstruction, resulting in the optimisation function

argmin
Φ

∫
∥∇Φ(x)− n̂(x)∥22 dx+ λ

∑

P
(Φ(pi))

2, (4.6)

where λ controls the degree of interpolation of the reconstructed surface, with
larger values ensuring a tighter fit to the point-set. The improvement in adding

4. Literature Review 35

Figure 4.6: Shows the reconstruction of two point cloud models using Poisson
and Screened Poisson reconstruction. Notes that Poisson reconstruction tends to
over-smooth the surface. Figure adapted from [45].

the second term in Eq. (4.6) can also be seen in Fig. 4.6. However, as with all
other interpolatory methods, the wrong choice of parameter λ can lead to over-
fitting of the reconstruction surface to the points and so a process of fine-tuning
must be implemented to obtain the optimal results.

4.3 Data-driven Approaches

Rather than relying upon hand crafted features to provide regularisation, like
local smoothness in the case of MLS, data driven method attempt to learn im-
portant geometric and topological features automatically. In this section we will
consider a selection of recent papers that consider using machine learning tech-
niques in the context of point-sets surface reconstruction.

4.3.1 Direct SDF Inference

The first work on directly learning signed distance functions for shape represen-
tation, DeepSDF, was presented by Park in [46]. The paper proposed using a
generative model to produce a continuous signed distance field that represented
objects. The generative approach allowed for high quality shape representation,
interpolation and completion from partial and noisy 3D input data. DeepSDF
significantly outperformed the previous benchmarks on shape representation and
completion tasks, and demonstrated the efficacy of using neural network based
approaches in the context of 3D geometry. However, the authors only considered
synthetic data with fairly simple geometry. Furthermore, the architecture im-
plemented was not invariant to the coordinate systems orientation, requiring the

4. Literature Review 36

point clouds be provided in a canonical pose. This severely limited this works
real world applications as this is typically not the case in real world applications.

A more recent paper [47], also considered using multi-layer perceptrons (MLPs)
for directly learning SDFs. Rather than taking a generative approach, Gropp
et al explicitly regularise their network by including the Eikonal equation, the
constraint of the norm of the gradient of the implicit function to be 1, into their
loss function. While their method can also include surface normal’s, their analysis
showed that the inclusion of the Eikonal equation is the most important term
for so called implicit geometric regularization. The method they introduced for
learning high fidelity implicit neural representations of shapes directly from raw
data achieved state-of-the-art results. While normal estimations are not needed
for this approach, the authors did note that the technique is more sensitivity to
noisy normal’s when they are used. Furthermore, while the authors did provide
some analysis of their network, seeking theoretical bounds, they was only able
to do this in the linear case as analysis of higher order terms becomes highly
non-trivial. Nevertheless, this work demonstrated how the Eikonal equation can
effectively be employed to perform regularisation of geometry in a deep learning
context.

4.3.2 Neural MLS Framework

There have also been numerous papers that have considered using deep learning
architectures within the IMLS approach. In [41], Liu et al present the DeepIMLS
approach which allows for the use of IMLS with sparse or noisy point clouds. An
auto-encoder architecture is used to predict where MLS points should be within
an octree structure [48]. The output of the auto-encoder is then used in the
traditional IMLS formulation from section 4.1.2. This method was shown to out-
perform RILMS (section 4.1.2) in capturing small scale and sharp details.

A different approach to using deep learning with IMLS was discussed in [49].
Here, the authors sought to remove the requirement for an input point-set to
have associated surface normals. Instead, the authors propose operating two
neural networks in a self-supervised manner, where the loss is coupled between
the output SDFs of the network. One of the networks learns the SDF via the
IMLS approach and the other uses the gradient of the predicted SDF to help
regularise the loss. The authors demonstrated that taking this approach allowed
the method to be more robust against noisy and sparse point clouds, while not
requiring surface normal vector estimations.

4. Literature Review 37

4.3.3 Other Learning Based Approaches

While we concentrated on finding signed distance functions in this report, meshes
are another common form of geometry representation; the work presented in
Point2Mesh [50] is particularly noteworthy for this report. The aim of the work
was to reconstruct a mesh given an input point-set. In this work, the authors
introduced the concept of a self-prior, which is a network that is able to encap-
sulate reoccurring geometry from a single shape within the weights of a deep
neural network. The method begins by encapsulating the point cloud in a mesh
and then iteratively deforms to shrink-wrap the point-set, while preserving geo-
metric features. Key to their approach, a convolutional kernel is optimised across
the entire point-set, allowing it to learn global geometric features. This allows
the mesh to converge to a desirable solutions without becoming trapped in unde-
sirable local minima. Furthermore, the authors show that this approach works on
both synthetic and real world scans for which traditional reconstruction methods
typically degrade.

4.4 Summary

In this chapter we have considered an array of different methods for performing
surface reconstruction from point-sets. To conclude, we provide a brief summary
of the considered methods, highlighting each methods strength and weakness; for
convenience this summary is tabulated in Table. 4.1.

4. Literature Review 38

n̂ Strengths WeaknessPrior Approach

Local

Tangent Planes [28] ✓ Simple to implement
✓ Highly efficient

✗ Not robust to acquisition noise or
normal estimation errors

MLS: Levin projection [31] G# ✓ Robust against Gaussian acquisition
noise

✗ Requires local reference plane fitting
✗ Typically produces oversmooth re-
construction

MLS: IMLS [43] ✓ Closed form solution to the implicit
function
✓ Highly efficient to implement

✗ Typically produces oversmooth re-
construction
✗ Highly sensitive to the Gaussian
weighting parameter

MLS: RIMLS [39] ✓ Inherently robust to sharp features
✓ Achieves SOFA for MLS approach
to surface reconstruction

✗ Iterative process leads to more com-
putational expense
✗ Increased parameters to tune within
the algorithm.

Global
RBF [42] ✓ Able to handle non-uniform sam-

pling.
✓ Guaranteed globally watertight re-
construction.

✗ Requires off-surface constraints.
✗ Poor performance against acquisi-
tion noise

Poisson [43] ✓ Produces globally watertight recon-
struction

✓ ✗ Over-smooths reconstruction/-
doesn’t pass near point-set
✗ Solution of Poisson problem requires
discretization to grid

Screened Poisson [44] ✓ Oversmoothing reduced via a posi-
tion constrain term.
✓ Produces SOFA reconstruction for
indicator based methods.

✗ Has the potential to overfit (interpo-
late points).

Data Driven

DeepSDF [46] # ✓ Generative neural network allowed
for handling of noise.
✓ SOTA on shape representation and
completion tasks.

✗ Requires 3D models be in a canoni-
cal pose.

DeepIMLS [41] ✓ Auto-encoder designed to handle ac-
quisition noise.
✓ Outperformed RIMLS on represent-
ing small and sharp detail

✗ Significant extra computational ex-
pense to compute when compared with
IMLS.

IGR [47] # ✓ Regularises the problem using the
Eikonal equation
✓ Shown to outperformed some classi-
cal surface reconstruction.

✗ Limited scope for analysis due to us-
ing MLPs
✗ Increased computation expense with
training MLP.

Point2Mesh [50] # ✓ Demonstrates SOTA in mesh recon-
struction from point-sets.
✓ Demonstrated the idea of self-prior
for shape geometry.
✓ Demonstrated good performance on
both synthetic and real-world recon-
struction.

✗ Outputs a mesh, which is inherently
discrete in nature.
✗ Doesn’t always generalise for shapes
of arbitrary topology

Key: = oriented surface normal’s required, G# = un-oriented surface normal’s
required, # = no surface normal’s required.

Table 4.1: Summary of the literature presented in Chapter 4, grouped by priors used to regularise the
reconstruction problem.

Chapter 5

The Shapeset Dataset

High quality data-sets are fundamental to the data-driven paradigm of machine
learning. While there are a number of sources of 3D scanned [6, 51, 52] and
3D CAD models [53], there are few sources of 2D point-sets that can be used
for algorithm development and testing. In this Chapter we introduce the shape-
set dataset, a repository of 2D point-sets with surface normal estimations, con-
structed as part of this project. We begin by presenting the pipeline used to
generate the dataset itself, highlighting the computational processes used and
the design decisions taken. We then present a subset of the dataset as an exam-
ple.

5.1 Shapeset Dataset Pipeline

In order to generate 2D point-sets, we first need a source of geometry. As the
aim is to be able to easily generate many different types of point-set, with as
little human input as possible, it was decided images where the easiest sources
of geometry to work with. In particular, we make use of silhouette images where
the inside of an object is black and the outside of an object is white.

Images used within this project where taken from [54], where images are released
under a creative commons license. An example silhouette image is shown in
Fig. 5.1 (a). Then, given this image, our aim is to produce a point-set of the
silhouettes boundary with surface normal estimates, like that shown in Fig. 5.1
(b). The overall pipeline for creating 2D point-sets is shown in the flow chart
in Fig. 5.2 and in Sections 5.1.1 to 5.1.4, we provide a detailed overview of each
stage of the pipeline.

39

5. The Shapeset Dataset 40

(a)

R
ab

b
it

100% 75% 50% 25% 10%

T
h
u
m

b
H

ex
 S

ta
r

(b)

Figure 5.1: (a) Shows an example silhouette image of a bunny. (b) Shows a
point-set extracted from the boundary of the silhouette image, with normal vector
estimates.

5.1.1 Image Resizing

The silhouette images used in this project are all of the portable network graphic
(png) file format. While the png format has lossless compression and is able
to encode transparent backgrounds, the image they represent have ultimately
been rasterized to a fixed pixel array size. As the surface of the geometry will be
drawn from the interface between light and dark pixels (described in the following
sections), the pixel array size directly impacts the final number of points that can
be generated in the point-set. To increase the number of points, an interpolation
procedure is applied to increase the overall image size (this idea is illustrated in
Fig. 5.3).

To interpolate the pixel array we make use of the mathematical technique of
bicubic interpolation, which is commonly used in many image processing tasks.
Bicubic interpolation works by considering a neighborhood of 16 pixels around
each interpolation pixel, and weight its value according to distance. Of course,
with any approximation technique, error is inevitable. In the case of bicubic
interpolation, the error manifests as aliasing where the edge inherits a jagged
structure (this idea is also demonstrated in Fig. 5.3). While techniques for anti-
aliasing exist, we found that they made very little difference to the overall point-
set generated; hence, they have not been included in this pipeline.

5.1.2 Edge Detection

Once the image has been resized, the next step is edge detection and extraction.
There exists a number of methods of extracting an object boundary, although

5. The Shapeset Dataset 41

Image Resize Edge
Detection

Silhouette
Image

Unit
Rescaling

Normal
Estimation

Point-set
Resampling

Variable
Density

Point-sets

Figure 5.2: Illustration of the 2D point-set construction pipeline. The input
to the pipeline is a silhouette image and the output is several point-sets, with
accompanying surface normal estimations. The most dense point-set is treated
as the ground-truth for any experiments.

most use the gradient of the intensity field to provide the cue for edge detection.

In this work, we use the Canny edge filter [55] because of its simplicity of im-
plementation. In brief, the approach works by first smoothing the image and
then calculating the gradient of the images intensity array. The principle is that
the image intensity varies most quickly when crossing an object boundary. The
algorithm then applies some further criteria, like thresholding the magnitude of
the gradients, to suppress spurious responses from the gradient field.

OpenCV provides a convenient method for implementing Canny edge detection,
with the output of this process being a binary image, where the black pixels
represents the object boundary. The horizontal and vertical location of black
pixels are then parsed into an Numpy array.

The point-set, after edge detection, has horizontal and vertical values represented
by integers (i.e., the pixel array index of the detected edge). To ensure that length
scales are consistent across all generated shapes, the scattered points are rescaled
such that (x, y) ∈ [0, 1]× [0, 1] for all x and y in the point-set. In practice, this
is achieved by dividing every horizontal position by the largest horizontal value,
and similarly for the vertical points.

5. The Shapeset Dataset 42

Original image Edge point-set Resized image Edge point-set

(a)

Original image Edge point-set Resized image Edge point-set

(b)

Figure 5.3: Illustrate increasing the pixel array size via interpolation. (a) Shows
a section of the original image, with the possible point-set extracted from it. (b)
Shows the image after interpolation has been applied, with an increased point
density extracted from it.

5.1.3 Surface Normal Estimation

The final stage in creating a ground-truth point-set is to generate an estimate of
the oriented surface normal for each point. This estimation process is split into
two parts: first we construct tangent plane approximations for each point in the
point-set, such that a unit normal can then easily be derived. The second stage
is ensuring that the surface normals are oriented: that is ensuring each surface
normal points in the direction away from the interior of the object. If a surface
normal points into the interior of the object then we call this unoriented.

Tangent Plane Estimation

As discussed in Chapter 2, the normal vector of a point on the boundary of an
object is the vector that is perpendicular to the surface tangent plane at that
point. Therefore, to construct a surface normal for each point within the point-
set, we must begin by constructing a local tangent plane.

For each point, we select k nearest neighbors from the point-set, sampled using
closest Euclidean distance; this defines a local region. Then, we construct a linear
approximation for the local region, such that the best-fit parameters m and c of:

y = mx+ c, (5.1)

are found. Given we now have an estimation of the surface tangent plane, we can
construct a vector, τ , that points along the direction of the tangent by sampling
two points. For simplicity, we sample the tangent line at x = 0 and x = 1, such
that:

τ = [1,m]T . (5.2)

Then the normal vector is given by: τ ·n = 0, which can be trivially satisfied by

5. The Shapeset Dataset 43

letting:
n = [−τy, τx]

T , (5.3)

where τx and τy are the x and y component of the vector τ , respectively. This is
illustrated in Fig. 5.4. Finally, we normalise the normal vector such that it is of
unit length (i.e., n̂ = n

|n|)
Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

✏i

n̂i

n̂j

⌧ i

⌧ j

1

Figure 5.4: Illustration of the process of surface normal estimation for two points
in the point-set. Here we use a k nearest neighbor value of 2. Note that the
normal vectors are unoriented as they are not consistent in pointing inward or
away from the surface.

Orientation Propagation

To ensure the normals are orientated, we select a point at random on the surface.
We then march through the point-set selecting the nearest neighbours of the
selected point and compute the dot product between the normal vectors. It is
expected that adjacent normals should point in similar directions, such that the
sign of the dot product is positive. If the sign is negative then the orientation
of the normal vector is flipped by scalar multiplication with −1. This process is
illustrated in Fig. 5.5.

5. The Shapeset Dataset 44

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

n̂i · n̂j = |n̂i||n̂j | cos(✓) = cos(✓)

✓

n̂j =

(
n̂j 0 < n̂i · n̂j 1

�n̂j n̂i · n̂j < 0

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

✏j

i

n̂i

n̂j

⌧ i

⌧ j

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

n̂i · n̂j = |n̂i||n̂j | cos(✓) = cos(✓)

✓

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

n̂i · n̂j = |n̂i||n̂j | cos(✓) = cos(✓)

✓

1

Your Paper

You

August 30, 2022

Abstract

Your abstract.

1 Introduction

n̂i · n̂j = |n̂i||n̂j | cos(✓) = cos(✓)

✓

1

Your Paper

You

September 2, 2022

Abstract

Your abstract.

1 Introduction

Compute Inner Product

Orient Normal

1

Your Paper

You

September 2, 2022

Abstract

Your abstract.

1 Introduction

Compute Inner Product

Orient Normal

1

Figure 5.5: Illustration of the surface normal orientation propagation procedure.

5.1.4 Point-set Resampling

Now that we have constructed a point-set, the final stage is to construct subsets
of the point-set. This is so that we may regard the most dense point-set as a
ground-truth for comparison and testing is later chapters. Points of the point-set
where sampled uniformly from the ground-truth point-set at 75%, 50%, 25%, and
10% of the original density. The generated 2D shapeset consists of 20 point-sets.
In Fig. 5.6 and Fig. 5.7, we show a selection of 6 shapes at the 5 different sampling
densities; note that 100% density is used to refer to the ground-truth geometry
in this project.

5.
T

h
e

S
h
a
peset

D
ata

set
45

R
ab

b
it

100% 75% 50% 25% 10%

T
h
u
m

b
H

ex
 S

ta
r

Figure 5.6: Examples of shapes from the Pointset-Dataset, with a singular interior region. Each shape shows the individual
points and the surface normal estimates at that point. The 100% column heading refers to the ground-truth shape geometry,
with the other percentages showing the percentage of points compared to the ground-truth.

5.
T

h
e

S
h
a
peset

D
ata

set
46

P
is

to
l

100% 75% 50% 25% 10%

S
k
u
ll

V
io

li
n

Figure 5.7: Examples of shapes from the Pointset-Dataset, with more than one interior region. Each shape shows the
individual points and the surface normal estimates at that point. The 100% column heading refers to the ground-truth shape
geometry, with the other percentages showing the percentage of points compared to the ground-truth.

Chapter 6

Benchmark Approaches

Before we consider the work conducted on developing a novel MLS surface re-
construction approach in Chapter 7, we first introduce three methods that we
will consider as benchmark approaches. In this Chapter we begin with a mathe-
matical derivation of each of the three Benchmark methods. Then we introduce
the PyPointset Python library, written as part of this project, that provides a
Python implementation for each of the benchmark reconstruction methods and
utility functions for dealing with point-sets.

6.1 Reconstruction Methods

In this project we implement three methods to act as benchmarks surface recon-
struction approaches; the methods selected are:

1. Implicit Moving Least Squares (IMLS),

2. Robust Implicit Moving Least Squares (RIMLS),

3. Implicit Geometry Regularisation (IGR).

In the following Section we provide a detailed derivation of each of the above
methods.

6.1.1 Implicit Moving Least Squares

As introduced in Chapter 2, moving least squares (MLS) is a general framework
for function approximation of scattered data. The simplest possible case of the
MLS framework is where there is a constant basis function, i.e., the approximation
space is restricted to:

f̂(x) = α1(x)ϕ1(x) = α1(x). (6.1)

This simple case of MLS is often referred to as Shepard’s method in statistics
literature [56], but more commonly referred to as implicit moving least squares

47

6. Benchmark Approaches 48

(IMLS) in computer graphics literature [33]; this is the convention we adopt in
this work. As discussed in Section 4.1.2, while the surface produced by IMLS has
a simple closed form solution the reconstructions produced are over-smoothed.
Nevertheless, we will regard this method as one of our baseline approaches for
comparison. Next, we provide a derivation of the closed form IMLS surface
definition and a geometric interpretation of function that is approximated.

Derivation

Begin by letting a set of N scatter data point be contained within a point-set P
such that P = {xi,ni}Ni=1, where xi ∈ Rd is the position vector of the scattered
data point and ni ∈ Rd is the surface normal vector associated with xi. The
aim in constructing our approximation is to find a signed distance function. It
is therefore important to define the relationship between a query point and the
point-set P; this is done via defining the height field.

The Height Field Definition

The aim in defining the height field is to describe a function ui(x) = u(x,xi),
that approximates a signed distance function for any input x. As the approxi-
mation space in IMLS is made of a singular constant basis function, the function
ui(x) is typically defined as the point on the tangent plane of xi which is closest
to x; this is the same technique originally proposed in the tangent plane projec-
tion method by Hoppe [28] introduce in Section 4.1.1.

Fig. 6.1 shows the geometry of a query point x being projected onto the tangent
plane of xi, where for fixed x we define di = ui(x). To be able to use ui(x)
within the MLS framework we must be able to express di in terms of the known
quantities x, xi and ni. By construction x and xi are both elements of Rd, and
so the geodesic distance (the shortest path between the two points) is given by
the ℓ2 vector norm:

ξi = ∥x− xi∥2. (6.2)

Using Eq. (6.2), the distance di can also be expressed as:

di = ξi cos(α). (6.3)

Finally, by noting that surface normals ni are of unit length (i.e., ∥ni∥ = 1) by
construction, di can be rewritten in terms of an inner-product between the vector
that points from xi to x and the unit surface normal ni by:

di = ∥x− xi∥2 cos(α) = ∥x− xi∥2∥ni∥2 cos(α) = ⟨x− xi,ni⟩, (6.4)

6. Benchmark Approaches 49

α

𝑥

𝑑!

𝜉!

𝑥!

𝑛!

Figure 6.1: Shows the geometry within a local neighborhood of a query point,
x, being projected onto the closest point of the tangent plane of xi. Here the
tangent plane is defined as the set of points q such that ⟨xi − q,ni⟩ = 0, where
ni is the unit surface normal at the point xi. The shortest distance between x
and xi is defined by ξi and the distance between x and the project of x onto
the tangent plane of xi is denoted as di. Finally, the angle between di and ξ is
denoted by α.

and hence
ui(x) = ⟨x− xi,ni⟩. (6.5)

The MLS Approximation

Now we have constructed the function to be approximated, we derive the closed
form solution for the IMLS surface. Recall that the MLS approximations are local
(see Section 3.1.4) and so the approximation coefficients have to be found for each
x we wish to evaluate the function at. Using the MLS framework introduced in
Chapter 3, we aim to minimise

∑

xi∈P

(
f̂(x)− ui(xi)

)2
W (x,xi), (6.6)

where f̂(x) = α1(x), ui(x) is given by Eq. (6.5), and W (x,xi) is a unnormalized
Gaussian weight function:

W (x,xi) = exp

(∥x− xi∥22
σ2

)
. (6.7)

Minimising Eq. (6.6) requires that we find the coefficient α1(x) for which Eq. (6.6)
is smallest. This can be done analytically by differentiating the expression with
respect to α1(x) and equating the expression to zero,

6. Benchmark Approaches 50

∂

∂α1

∑

xi∈P

(
α1(x)− ui(x)

)2
W (x,xi)

 = 0. (6.8)

By the linearity of derivatives, the partial derivative in Eq. (6.8) can be exchanged
with the summation over P,

∑

xi∈P

[
∂

∂α1

(
α1(x)− ui(x)

)2
W (x,xi)

]
= 0, (6.9)

which can be easily solved to yield:

∑

xi∈P

[
2α1(x)

(
α1(x)− ui(x)

)
W (x,xi)

]
= 0. (6.10)

After trivial rearrangement, Eq. (6.10) can be expressed as

α1(x)
∑

xi∈P
W (x,xi) =

∑

xi∈P
ui(x)W (x,xi), (6.11)

and hence, the coefficient α1(x) can be written in closed form as

α1(x) =

∑
xi∈P ui(x)W (x,xi)∑

xi∈P W (x,xi)
. (6.12)

Finally, substituting ui(x) of Eq. (6.5) into Eq. (6.12) and α1(x) of Eq. (6.12)
into Eq. (6.1), we yield the Kolluri [33] definition of the IMLS surface:

f̂(x) =

∑
xi∈P⟨x− xi,ni⟩W (x,xi)∑

xi∈P W (x,xi)
. (6.13)

6.1.2 Robust Implicit Moving Least Squares

While the IMLS approach, derived in the previous section, offers a simple closed-
form function to approximate a singed distance function, fitting tangent planes
and blending them together with Gaussian weighting functions does not allow
for sharp features within a scanned objects geometry to be modelled.

Robust implicit moving least squares (RIMLS) [57] improved upon the standard
IMLS approach by producing an approximation that is robust against outliers in
both spatial position and surface normals noise. While robustness against spa-
tial position is useful for dealing with noise from acquisition, robustness against

6. Benchmark Approaches 51

surface normals is key to producing sharp feature reconstructions. When sharp
features are present in geometry, the differential properties of the surface become
discontinuous. Then, viewing the different discontinuous regions as patches, we
can see that normals belonging to the surface in different patches typically point
in vastly different directions (see Fig. 6.2). Therefore, the surface normals from
different patches should be regarded as the outliers if sharp features are to be
preserved.

Using ideas from the field of robust statistics, Öztireli [39] showed how MLS
could be reframed as a local kernel regression (LKR) problem and then showed
how it could be solved iteratively using re-weighted least squares (IRLS). In
the following section we present the salient points needed from robust statistics
and derive the implicit surface definition. We then provide an overview of the
algorithmic implementation of the approach.

0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 f(x)
Sharp Feature

0.25 0.50 0.75 1.00 1.25 1.50 1.75
-3

-2

-1

0

1

2

3

Patch 1

Patch 2

d
dx
f(x)

First Derivative

Figure 6.2: Shows the surface normal vectors near a sharp feature in a shapes
geometry. The surface normal can be regarded as belonging to different patches
on the shapes surface and hence points in the first plane are outliers in the second,
and vice-versa.

Robust Statistics

RIMLS makes use of iteratively re-weighted least squares (IRLS) to solve its op-
timisation problem. While a full introduction to IRLS is beyond the scope of
this report (the interested reader should consult [58]), we highlight the necessary
parts to derive the RIMLS surface definition.

An M-Estimator is an approach that generalises the statistical techniques of
maximum likelihood estimation, and is usually used as an alternative to least
squares method when the data has outliers, extreme observations, or does not
follow a normal distribution [59]. The fundamental idea behind RIMLS is to
approach the minimisation of the MLS objective function from the perspective

6. Benchmark Approaches 52

of finding an M-Estimator for it. The aim is to minimise the objective function

arg min
α(x)

∑

i

ρ
(
f̂(x)− yi

)
w(x,xi) (6.14)

where the vector of coefficient α(x) = [α1(x), α2(x), ..., αn(x)]
T defines a linear

combination of basis functions f̂(x) =
∑

i αi(x)ϕi(x) and ρ(·) is some arbitrary
function. Obviously, if ρ(x) = x2 then we recover precisely the MLS objective
function, and so the choice of ρ(·) is important in generating a robust estimator.
If we choose ρ(·) such that it is differentiable and we define,

η(x) =
1

x

dρ

dx
, (6.15)

then the minimisation problem defined in Eq. (6.14) can be solved via iteratively
re-weighted least squares (IRLS) defined by:

αk = argmin
α

∑(
f̂(x)− yi

)2
w(x,xi)η(r

k−1
i), (6.16)

where rk−1
i = f̂αk−1(xi) − yi is the ith residual at the k − 1 iteration using the

coefficients αk−1 in the functional f̂(x). The key to making this optimisation
problem robust to outliers is in the choice of function ρ(·). Ideally, ρ(·) should
grow slowly such that the weight function η(x) tends to zero as x tends to infinity.

In the RIMLS approach, the authors choose the ρ(x) to be the Welsch function
defined by,

ρ(x) =
σ2
r

2

(
1− exp

(
−x2

σ2
r

))
, (6.17)

which leads to a weight function defined a un-normalised Gaussian,

η(x) =
1

x

∂ρ

∂x
= exp

(
−x2

σ2
r

)
. (6.18)

In Fig. 6.3 we provide a comparison of ρ(x) = x2 (i.e., the OLS criterion) and
ρ(x) equal to the Welsch weight function. As can be seen, the weight function η(·)
for the OLS case is constant, but in the case of the Welsch function the residuals
are weighted according to a Gaussian distribution. This provides a mechanism
to robustly discount the largest residuals in the minimisation problem.

6. Benchmark Approaches 53

-2 -1 0 1 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
L
S

ρ

-2 -1 0 1 2

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

dρ

dx

-2 -1 0 1 2

0.96

0.98

1.00

1.02

1.04

η

-2 -1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

W
el

sc
h

ρ

-2 -1 0 1 2

-0.4

-0.2

0.0

0.2

0.4

dρ

dx

-2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

η

Figure 6.3: Shows the objective function, ρ, derivative of the objective function,
dρ
dx , and the weighting term, η, for both OLS and Welsch objective functions.

Implicit Function Derivations

Following almost directly the same derivation as IMLS in Section 6.1.1, we use a
functional with constant basis function,

f̂(x) = α1(x)ϕ(x) = α1(x), (6.19)

and we seek to regress a signed distance function which we approximate using
yi = ⟨x − xi,ni⟩ (see Section 6.1.1 for a derivation of this). Using the robust
statistics introduced in the previous section, the robust IRLS minimisation then
becomes

fk(x) = argmin
α1

∑
(α1 + ⟨x− xi,ni⟩)2w(x,xi)η

(
rk−1
i

)
(6.20)

where rk−1
i = fk−1(x) − ⟨x − xi,ni⟩ is the residual between the tangent plane

projection and the k − 1 approximation to the signed distance function at x.
While this function definition already provides a more robust approximation in
the face of spatial outliers, it does not account for outliers in the surface normal.
Defining the normal vector residual as,

∆nk
i = ∥∇fk(x)− ni∥2, (6.21)

6. Benchmark Approaches 54

we can define a new weight function on the surface normals µ as

µ(∆nk
i) = exp

(
−
(
∆nk

i

σn

)2
)
. (6.22)

Integrating this final weight term into the minimisation problem in Eq. (6.20)
and solving for the parameter α1, the iterative definition for the final RIMLS
surface is given by

fk(x) =

∑⟨x− xi,ni⟩w(x,xi)η
(
rk−1
i

)
µ
(
∆nk

i

)

∑
w(x,xi)η

(
rk−1
i

)
µ
(
∆nk

i

) . (6.23)

Algorithmic Implementation

To implement RIMLS, there are three elements of the algorithm that must first
be considered. First is the initialisation of the re-weighting terms η(·) and µ(·).
As discussed in [57], it is usual to initialise an IRLS method with another robust
estimator like the median, however, as the continuity of the solution is important
the authors of [57] opted to uses a least squares criterion as the initialiser. This
has the advantage of being both simple to implement, the weights at the first
iteration are set to 1 (i.e., η

(
r0i
)
= µ

(
∆n0

i

)
= 1), and also ensure that each

iteration produces a continuous reconstruction.

The second element that must be addressed is the computation of the gradient of
the scalar field in Eq. (6.21). As the definition of ∇fk(x) is recursive, computa-
tion of the exact derivatives yields a complicated and computationally expensive
expression. However, the gradient of the field can be approximated by assuming
that the reweighing terms are constant; this leads to an approximation where the
error is maximal when the refitting weights vary quickest (i.e., near sharp edges).
We begin by defining:

ξk−1
i = η

(
rk−1
i

)
µ
(
∆nk−1

i

)
, (6.24)

such that ξk−1
i is considered constant with respect to x, then the gradient of the

6. Benchmark Approaches 55

scalar field is given by

∇fk(x) ≈ ∇
(∑⟨x− xi,ni⟩w(x,xi)ξ

k−1
i∑

w(x,xi)ξ
k−1
i

)
,

≈
∑

ni(w(x,xi)ξ
k−1
i)2 +

∑⟨x− xi,ni⟩∇w(x,xi)ξ
k−1
i

(
w(x,xi)ξ

k−1
i

)

(∑
w(x,xi)ξ

k−1
i

)2 ,

−
∑⟨x− xi,ni⟩w(x,xi)ξ

k−1
i ∇w(x,xi)ξ

k−1
i(∑

w(x,xi)ξ
k−1
i

)2 ,

≈
∑

niw(x,xi)ξ
k−1
i +

∑∇w(x,xi)ξ
k−1
i

(
⟨x− xi,ni⟩ − fk(x)

)

∑
w(x,xi)ξ

k−1
i

.

(6.25)

The gradient of the Gaussian weighting term in Eq. (6.25) is then given by

∇w(x,xi) = −2|x− xi|
σ2

w(x,xi). (6.26)

The final element that must be addressed is defining a termination criterion for
the IRLS minimisation. There exists two options for terminating: 1) Termination
can be defined in terms of convergence

max
i

∣∣∣∣∣∣

η
(
rki
)
µ
(
∆nk

i

)

∑
j η
(
rkj

)
µ
(
∆nk

j

) −
η
(
rk−1
i

)
µ
(
∆nk−1

i

)

∑
j η
(
rk−1
j

)
µ
(
∆nk−1

j

)

∣∣∣∣∣∣
< t (6.27)

where t is a user defined threshold. 2) Termination can be defined in terms of a
maximum number of IRLS iterations M , which is also user defined.

6.1.3 Implicit Geometry Regularisation

The final comparison method we present is the implicit geometric regularisation
method [47]. In this method, a neural network is used directly to encode the
signed distance function of the implicit surface, which is referred to as a neural
implicit representation. While the IGR method cannot be derived from first
principles, we will introduce the loss function and seek to explain how each term
contributes to the surface reconstruction method.

More precisely, the IGR method aims to find the optimal weights and biases θ
of a fully connected MLP, which we denote f̂θ(x) where fθ : R2 → R, such that
f̂θ(x) approximates a signed distance function. The approach accepts either just
a point-set, xi ∈ P, or a point-set with surface normals, (xi,ni) ∈ P. The MLP
is trained with respect to the following loss function,

L(θ) = ℓ(θ) + λEx

[
(||∇fθ(x)||2 − 1)2

]
(6.28)

6. Benchmark Approaches 56

where λ > 0 is a hyper-parameter, || · ||2 is the Euclidean 2 norm, and

ℓ(θ) =
1

|P|
∑

i∈P
(∥fθ (xi)∥2 + τ ∥∇xfθ (xi)− ni∥2) . (6.29)

If P does not contain surface normals, then τ = 0, else it is tuned to a value in
the range (0, 1].

We now seek to understand this loss function by considering each terms affect on
the implicit function obtained. The first term of Eq. (6.29) constrains the implicit
function at the point-set positions, which has the effect of forcing f̂(x) → 0 for all
x ∈ P. This is one of the requirements of a signed distance function. The second
term of Eq. (6.29) constrains the gradient of the field at the point-set to point in
the direction of the surface normal vector, a requirement that the implicit surface
must satisfy following from the underpinning differential geometry. Finally, the
second term of Eq. (6.28), is known as the Eikonal term. It is possible to show
that if an implicit function f(x) is a signed distance function then f(x) satisfies
the Eikonal equation

∥∇f(x)∥ = 1 ∀x ∈ Rn. (6.30)

While we do not provide a proof here, the interested reader should consult [60].
Hence, minimising the error in the Eikonal term over samples of R2 provides
a regulariser that encourages the implicit function represented by the MLP to
produce a signed distance function over all of space.

6.2 Point-set Reconstruction Library

Now we have introduced the three benchmark methods implemented within this
project, we introduce the PyPointset library. The library is lightweight and
has minimal dependencies, only requiring Numpy for numerical computations,
TensorFlow for hardware accelerated neural network training, and Matplotlib
for visualisation. In the following sections we present further details about the
library, provide a minimal setup code example for each method, and show some
example reconstructed surfaces.

6.2.1 The Point-set Class

The library is implemented such that the point-set (either just positions or po-
sitions and surface normals) are encapsulated within a point-set object. Once
instantiated, the positions and surface normals can be obtained using the
plc_object.position and plc_object.normals methods, respectively. Then
each reconstruction method is contained within its own class and the point-set
object is passed to the reconstruction methods as necessary. The following code

6. Benchmark Approaches 57

instantiates the built-in example star point-set and then prints both the position
vectors and normal vectors.

import reconstruct.pointcloud_utils as plc_utils

plc = plc_utils.pointcloud() #load example star point-set

print(plc.position) # print the point-set position vectors
print(plc.normals) # print the point-sets normal vectors

both return np arr of shape (N, 2), where
N is the number of points.↪→

6.2.2 IMLS Implementation

As the IMLS implicit surface has a closed form solution, Eq. (6.13) of Section
6.1.1, its computational implementation is trivial amounting to nothing more
than a function that carries out the algebraic operations on vectors. For effi-
ciency, the function is parallelised by vectorisation of operations like the inner
product and the weighting computation, using the numerical computing package
Numpy.

IMLS reconstruction using the PyPointset library can be carried out in 6 lines
of Python code:

import reconstruct.pointcloud_utils as plc_utils
import reconstruct.IMLS as IMLS

plc = plc_utils.pointcloud() # loads example star point-set.
imls = IMLS.IMLS(plc, sigma = 0.5) # defines the weight term.
imls.construct_approximation(200) # evaluate on 200x200 grid
imls.visualise_reconstruction() # extract iso-contour

The reconstruction obtained via running the above code is shown in Fig. 6.4,
with the signed distance function plotted in Fig. 6.4 (a) and the reconstructed
surface extracted from the 0 iso-contour plotted in Fig. 6.4 (b).

RIMLS Implementation

Although the derivation of the RIMLS implicit function is some-what involved,
its actual computational implementation is fairly straightforward. Our imple-
mentation largely follows the pseudo-code for the RIMLS approach presented by
Öztireli in [57]. The method is built using Numpy and also implements vectorisa-
tion of algebraic operations for efficiency.

6. Benchmark Approaches 58

(a)

IM
L
S
 R

ec
on

st
ru

ct
io

n
Implicit Field

P

(b)

Reconstruction Surface

Figure 6.4: Shows the reconstruction output produced when using the IMLS
module of the PyPointset library. (a) Shows a visualisation of the implicit field
where orange represents negative values and blue represents positive values. (b)
Shows the extracted surface from the 0th level-set of the implicit field.

RIMLS reconstruction using the PyPointset library can also be carried out in 6
lines of Python code:

import reconstruct.pointcloud_utils as plc_utils
import reconstruct.RIMLS as RIMLS

plc = plc_utils.pointcloud() # loads example star point-set.
rimls = RIMLS.RIMLS(plc, [0.001, 0.06, 0.02]) #define alg

params↪→

rimls.construct_approximation(100) # evaluate on 200x200 grid
rimls.visualise_reconstruction() # extract iso-contour

The list of parameters passed as arguments when instantiating the RIMLS class
refers to the Gaussian reweighting variances σ2, σ2

r , and σ2
n, respectively. The

above code yields the reconstruction shown in Fig. 6.5. We note that sharp
features of the stars geometry are preserved much better in this reconstruction
but that the algorithm doesn’t not produce a water-tight reconstruction in the
area where the the point-set has a less dense sampling (bottom right).

6. Benchmark Approaches 59

(a)

R
IM

L
S
 R

ec
on

st
ru

ct
io

n
Implicit Field

P

(b)

Reconstruction Surface

Figure 6.5: Shows the reconstruction output produced when using the RIMLS
module of the PyPointset library. (a) Shows a visualisation of the implicit
field where orange represents negative values and blue represents positive values.
Note that the white area of the implicit field away from the surface defines areas
where the value of the implicit field has evaluated to nan. (b) Shows the extracted
surface from the 0th level-set of the implicit field.

IGR Implementation

The final method, IGR, differs from the previous two methods in that the SDF
does not have a closed or iterative closed form solution. Instead the SDF is
represented in the weights and baises of an MLP after the network has been
trained. The MLP was implemented in Tensorflow deep learning framework as
this provides access to hardware acceleration, improving computation efficiency.

Like IMLS and RIMLS, IGR reconstruction using the PyPointset library can
also be carried out in 6 lines of Python code:

import reconstruct.pointcloud_utils as plc_utils
import reconstruct.IGR as IGR

plc = plc_utils.pointcloud() #load example star point-set
igr = IGR.IGR(plc)
igr.train(5000) # train for 5000 epochs
igr.visualise_reconstruction() # extract iso-contour

The default MLP architecture for the IGR method is a feedforward MLP with
4 hidden layer, each with 80 neurons. The weights and biases are initialised
via sampling from an N (0, 0.01) Gaussian distribution and the network uses the

6. Benchmark Approaches 60

stochastic gradient decent algorithm (see Section 3.2.3) with a learning rate of
10−3.

The reconstruction obtained via running the above code is shown in Fig. 6.6,
with the signed distance function plotted in Fig. 6.6 (a) and the reconstructed
surface extracted from the 0 iso-contour plotted in Fig. 6.6 (b).

(a)

IG
R

 R
ec

o
n
st

ru
ct

io
n

Implicit Field

P

(b)

Reconstruction Surface

Figure 6.6: Shows the reconstruction output produced when using the IGR mod-
ule of the PyPointset library. (a) Shows a visualisation of the implicit field where
orange represents negative values and blue represents positive values. (b) Shows
the extracted surface from the 0th level-set of the implicit field.

Chapter 7

A Novel MLS Approach

As previously discussed, the MLS framework for function approximation and
surface reconstruction acts on an inherently local scale: the approximation at each
point is constructed via consideration of only a local neighborhood of scattered
data-points. While the local smoothness prior has the advantage of being able to
generalise to many classes of geometry, acquisition devices, and point-set spatial
scales, the appropriate handling of either sharp features within the geometry
or acquisition noise is typically not possible without further constraining the
problem.

In this Chapter we introduce the work conducted on developing a novel approach
to surface reconstruction using the moving least squares (MLS) framework. As
we have discussed previously, MLPs can theoretically approximate any function.
In this project, we seek to use this principle to develop an approach where op-
timal basis functions for the MLS reconstruction are learned. The aim is that
learning optimal basis functions, globally across shape geometry, will allow us to
represent different geometric features, for example sharp features, better on a
local scale; this general principle is similar to the concept of self-prior introduce
in the Point2Mesh work [50]. We will refer our novel approach throughout this
Chapter as MLP-MLS.

While the approach is still currently under development, this Chapter presents
the work conducted todate. In this Chapter we begin by providing an overview
of the approach. Then we consider the exploratory work conducted, initially in
1 dimension and then 2 dimensions, and we present the current issues faced, and
an outlook to future work that is to be conducted.

7.1 MLP-MLS Overview

As we have seen in Chapter 4, MLS approaches to surface reconstruction typ-
ically uses a set of low-order fixed algebraic polynomial as the basis functions
to construct the approximation. Under our novel MLP-MLS approach we re-
place these polynomials basis functions with a basis defined by a ReLU MLP

61

7. A Novel MLS Approach 62

neural network. An important part of our approach is the separation between
MLP basis representation and the MLS framework. While the MLP is trained
with respect to the output of the MLS approximation, the MLS framework works
independently of this training procedure, only operating on the basis functions
defined by the MLP. This has the advantage, compared with IGR for example,
of meaning that established theory of the MLS framework (e.g., the provability
of good approximations [33]) can be directly imported into our approach.

The reconstruction algorithm works in two phases:

(1) Training: The MLP basis functions are trained to minimise an error term
between the MLS approximation at each of the point-set positions and the
ground-truth value (i.e.,

∑
i ∥f̂(xi)− f(xi)∥ ∀x ∈ P).

(2) Execution: After the MLP basis functions converges, the parameters of
the MLP are fixed and the usual reconstruction pipeline for MLS is enacted:
The local MLS optimisation problem is solved for each position within
the domain to produce a global approximation f̂(x). Then for surface
reconstruction the surface is extracted using Marching Squares [5].

The overall reconstruction pipeline is summarised visually in Fig. 7.1.

Training Pipeline:

Input:
Point cloud

Training loop:

Feedforward neural
network to generate

basis function

Solve MLS
optimization problem Calculate error

𝜖 = #𝑓 𝑥 − 𝑓(𝑥)!𝑓 𝑥 = ∑𝜶𝑻 𝑥 𝚽 𝑥

Backpropagate error
through the MLP

model
𝑚" 𝑥 = 𝚽(𝑥)

Execution phase (𝑚" 𝑥 now fixed):

Input:
Point cloud

Feedforward neural
network to generate

basis function
𝑚" 𝑥 = 𝚽(𝑥)

Solve local MLS
optimization problem

!𝑓 𝑥 = ∑𝜶𝑻 𝑥 𝚽 𝑥

Obtain global implicit
surface function

!𝑓 𝑥

Extract surface iso-
contour using

marching squares
S = 𝑥 !𝑓 𝑥 = 0}

Figure 7.1: The MLP-MLS approach in general. There is a training phase where
optimal basis functions are learned and an execution phase where the parameters
of the MLP are fixed and the reconstruction surface is extracted.

7. A Novel MLS Approach 63

7.2 MLP-MLS in 1D

Before considering MLP-MLS for surface reconstruction in 2 dimensions, we first
explore the simpler case of 1 dimensional function approximation using the pro-
posed MLP-MLS framework. The aim in working in 1 dimension is twofold:
firstly, it enables us to establish that the proposed methods can produce satisfac-
tory approximations. Secondly, it provides a testbed on which we can experiment
with the MLP-MLP approach and the MLP architecture.

In this section we will make use of two test functions, which we introduce below.
Then, we briefly introduce the reader to both the mathematical and computa-
tional implementation of the approach, and finally presenting the experiments
conducted and the results obtained.

7.2.1 The Test Problem

In this section we make use of two test functions: the first function, defined by:

f1(x) = sin(4.9x) + 2 cos(10x) + 3 sin(8.9x)− 1, (7.1)

yields a modulated periodic function, shown in black in Fig. 7.2 (left). The second
function defined by:

f2(x) = |x− 0.5|, (7.2)

yields a function with a discontinuous derivative (i.e., a sharp geometric feature).
This function is plotted in black in Fig. 7.2 (right). We restrict our attention to
the closed interval x ∈ [0, 1] and take 40 uniformly sampled points to produce the
point-set P1 and P2 for the functions f1(x) and f2(x), respectively. The point-set
for both functions is plotted in yellow in Fig. 7.2.

7.2.2 The Approximation Procedure

We first introduce some notation. Let mθ : Ra → Rb denote a functional rep-
resentation of an MLP. In the 1 dimensional case a = 1 and b is a user defined
number of basis functions. The parameters, θ, of the MLP are defined by the
architecture of the network. For brevity, we use the tilde symbol above a set
of parameters θ̃ as a short-hand for defining the neural architecture such that
θ̃ = [a, b, c] defines an MLP with 3 layers: a neurons in the first, b neurons in the
second, and c neurons in the third.

Given an MLP, the functional we will construct the approximation with will be
of the form:

f̂(x) = α(x)Tmθ(x), (7.3)

7. A Novel MLS Approach 64

0.0 0.2 0.4 0.6 0.8 1.0

x

-3

-2

-1

0

1

2

3

f(
x
)

f(x) = sin(4.9x) + 2cos(10x) + 3sin(8.9x)− 1

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.1

0.2

0.3

0.4

0.5

f(
x
)

f(x) = |x− 0.5|

Figure 7.2: The test functions f1(x) (left) and f2(x) (right), plotted on the
interval x ∈ [0, 1]. The yellow scatter points represent the point-sets P1 and P2

in the left and right plots, respectively.

where α(x) = [α1(x), ..., αb(x)]
T is a vector of MLS coefficients. In this form,

the coefficients α(x) are then found using the usual MLS function approximation
framework we introduced in Section 3.1.4. However, to obtain optimal basis
functions, the MLP needs to be trained. In the following Section we define more
precisely the training procedure.

Training the MLP

Before we begin training, the MLP first needs to be initialised. In this project
we initialise with random weights and biases drawn from an N (0, 1) Gaussian
distribution. Then the training procedure is as follows:

1. Each point of the point-set is pushed through the MLP, using the feedfor-
ward algorithm (see Section 3.2.2), to produce a matrix B, where:

B =
[
mθ (x1)

T ,mθ (x2)
T , . . . ,mθ (xM)T

]T
. (7.4)

2. A query point q is selected at random from P.

3. The MLS approximation at q is then solved using Eq. (3.23) from Section
3.1.4 such that:

f̂(q) = mθ(q)
T
[
BTW (q)B

]−1
BTW (q)y, (7.5)

where B is as defined in Eq. (7.4), W (q) is the weight matrix defined in
Eq. (3.19), and y is the vector of all f(xi) ∈ P.

4. The absolute error, ε, between the approximation f̂(xi) and the true value
f(xi) = yi is then evaluated:

ε = |f̂(q)− f(q)|. (7.6)

7. A Novel MLS Approach 65

5. Steps 2 to 4 are repeated N times, with the cumulative sum of all ε from
step 4 being denoted C. (i.e., C =

∑
i εi)

6. The cumulative error C is then back-propagated through the network, using
the backpropagation algorithm (see Section 3.2.3); this defines the end of
an epoch.

7. Steps 1 to 6 are then repeated for either a fixed number of epochs E, or
until the cumulative cost converges to a minimum.

Once the MLP has been trained, the parameters θ are fixed, and the function
can be reconstructed. A dense set of points, R ⊂ [0, 1], is then generated. Then
for each r ∈ R, the function is approximated:

f̂(r) = mθ(r)
T
[
BTW (r)B

]−1
BTW (r)y, (7.7)

where B, W (r) and y are as defined in step 3 above.

The MLPs used within this project are built using the TensorFlow deep learning
framework. Furthermore, for computational efficiency, the MLS approximation
also is carried out using the TensorFlow maths API; this prevents unnessassery
conversion of Tensor objects to Numpy arrays, and vice-versa.

7.2.3 Experiments in 1D

In this Section we describe the experiments conducted to approximate the func-
tions f1(x) and f2(x) defined in Eq. (7.1) and Eq. (7.2), respectively. There are
three central hypotheses we will seek to consider in this Section, they are stated
formally below.

Hypothesis 7.1: (Periodic and Sharp Feature Representation).
The MLP-MLS approach has the expressivity to represent both periodic

and sharp features features of a function.

Hypothesis 7.2: (Network Architecture).
The network architecture (the arrangement of weights and biases) of the

MLP effects the MLS approximation achieved.

Hypothesis 7.3: (Optimality of Basis Function).
For a fixed MLS approximation framework (i.e., fixed weighting variance
σ2 and number of basis functions b), a better approximation can be achieved
via a set of learned basis functions compared with a fixed polynomial basis.

7. A Novel MLS Approach 66

Of course, the notion of better in Hypothesis 7.3 must be more formally defined
before it can be tested; in the 1 dimensional case we use the metric defined in
Def. 7.1 to define which approximation is better.

Definition 7.1: (1D Function Approximation Metric).

Let X = {0, 1
hi
, 2
hi
, ..., 1} where hi is some user defined discretisation pa-

rameter, then we define the metric between the approximation f̂(x) and
the ground-truth f(x) as

d(f̂ , f) =
∑

x∈X
∥f̂(x)− f(x)∥1. (7.8)

Experimental Setup: Periodic Function Modelling

We begin by investigating the modulated periodic function f1(x). In this exper-
iment, we fix the value of the MLS weighting term, σ2 and the number of basis
functions, b, to be 0.05 and 4, respectively. We then run the MLP-MLS recon-
struction, as detailed in the Section 7.2.2, but with varying network architectures
θ̃. The MLP-MLS training phase is run for a total of 200 epochs, with a batch
size of 20, for each of the network architectures. The reconstruction metric for
each of the architectures was constructed with hi = 1000.

Results: Periodic Function Modelling

The quantitative reconstruction errors are tabulated in Fig. 7.3 and the qualita-
tive results of the final reconstructions are shown in Fig. 7.5.

As is clear from Fig. 7.3, and the qualitative reconstructions achieved in Fig. 7.5,
the network architectures has a dramatic effect on the resulting approximations
achieved; this provides evidence for Hypothesis 7.2. Interestingly, it appears that
increasing the number of layers past a certain number had a detrimental effect
on the approximation achieved. Recall that in Section 3.2.4 we noted that in-
creasing the number of layers causes the number of linear regions in the output
to grow exponentially compared with the linear scaling when increasing layer
widths. The fact that the reconstruction accuracy decreased likely indicates that
the MLP provided too many degrees of freedom to be constrained by the problem
and that the network was overfitting the data.

In Fig. 7.4 we plot the approximation achieved via using the standard MLS
approximation with a fourth order polynomial. The approximation accuracy
achieved was 0.054. This provides evidence to support Hypothesis 7.3, as the

7. A Novel MLS Approach 67

1 2 3 4 5

Number of layers

10
25

50
10

0
N

u
m

b
er

 o
f
n
eu

ro
n
s

p
er

 l
a
y
er 0.012 0.012 0.0071 0.0064 0.0072

0.073 0.067 0.0074 0.0036 0.0071

0.01 0.0047 0.0029 0.0032 0.0067

0.0073 0.0022 0.0025 0.0029 0.0066

10-2

Figure 7.3: Shows the quantitative results for reconstruction of the modulated
periodic function. The better the reconstruction the smaller the metric value.

best accuracy under the MLP-MLS approach was 0.0022, a 95% increase in the
percentage accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

x

-6

-4

-2

0

2

4

6

f̂(
x
)

σ2 = 0.05

Figure 7.4: Shows the approximation of f1(x) achieved via the standard MLS
approach to function fitting using a forth order polynomial basis. The approxi-
mation accuracy was 0.054.

7.
A

N
o
v
el

M
L
S

A
ppro

ac
h

68

10
1 2 3 4 5

25
50

10
0

Number of neurons within hidden layers
Nu

m
be

r o
f h

id
de

n
la

ye
rs

Figure 7.5: Shows the qualitative reconstruction of the point-set P1 using the MLP-MLS approach for different network
architectures.

7. A Novel MLS Approach 69

Experimental Setup: Sharp Feature Function Modelling

In this second set of experiment we seek to establish that the MLS-MLP ap-
proach can represent sharp features within functions. As we can see that f2(x)
is comprised of two linear regions, we make use of the heuristics introduced in
Section 3.2.4 to select a compact neural architecture θ̃ = [10]. This time we use
a wider Gaussian weighting variance of σ2 = 0.2 but keep the number of basis
function the same as previously, b = 4. All other training parameters remain the
same as the previous experiments.

Results: Sharp Feature Function Modelling

The qualitative results from sharp feature modelling are shown in Fig. 7.6. In
Fig. 7.6 (a) we plot the result from approximating f2(x) using the standard
MLS framework using 4 polynomial basis functions (ϕi(x) = xi|i ∈ {1, 2, 3, 4}).
In this case, the MLS approach produces an overly smooth approximation that
does not capture the sharp feature of the edge. In Fig. 7.6 (b) we plot the
result approximation from using the MLP-MLS approach. In this second case,
the approximation captures the sharp feature well, but seems to produce poor
approximations to the linear regions compared with the standard MLS approach.

0.0 0.2 0.4 0.6 0.8 1.0

x

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f̂(
x
)

σ2 = 0.20

(a)

0.0 0.2 0.4 0.6 0.8 1.0

x

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f̂(
x
)

σ2 = 0.20

(b)

Figure 7.6: Show the reconstruction of the point-set P2, using (a) MLS with a
4th order polynomial basis (b) MLP-MLS with 4 learned basis functions.

Nevertheless, the results of this experiment do provide evidence for Hypothesis
7.1, that the MLP-MLS approach can represent sharp features of functions. Fur-
thermore, it also provides further evidence for Hypothesis 7.3 as with fixed MLS
approximation parameters the qualitatively results show that MLP-MLS achieves
a better approximation, passing close to more of the points.

7. A Novel MLS Approach 70

7.3 MLP-MLS in 2D

Now we have explored the 1 dimensional case of using MLP-MLS for function
approximation, we now consider the more difficult task of using the framework for
surface reconstruction in 2D. In the following section we introduce the changes
that are required to use MLP-MLS for surface reconstruction, the preliminary
experiments conducted, and the results obtained.

7.3.1 Alterations to the MLP-MLS Approach

Moving to two dimensions for surface reconstruction requires two significant
changes to the approximation approach, compared with the approach presented
in Section 7.2.2. The first is to ensure that we are able to regress a signed dis-
tance function (SDF) and the second is to ensure that the MLP operates in on a
common coordinate space; we outline these changes in more detail below.

Point-set Constraints

Firstly, the function value y, which we seek to approximate via MLP-MLS is
inherently 0 at the points of the point-set when approximating a SDF. To prevent
the trivial solution (i.e., f(x) = 0 ∀x ∈ R) we must regularise the approximations
process by imposing further constraints. In this preliminary work, we use the
pseudo-normal constraints method, described in [61]. Suppose we have a point-
set P that contains both point positions and surface normals, then an augmented
point-set P ′ is constructed such that:

P ′ = {f(xi) = 0 | ∀ xi ∈ P} ∪ {f(xi ± ε) = ±ε | ∀ (x,ni) ∈ P}, (7.9)

where ε is a small value (e.g., ϵ = 10−4); this idea is illustrated for the unit circle
in Fig. 7.7.

The augmented point-set P ′ prevents the trivial solution as the point-set now
also contain non-zero function values. Furthermore, as the function value a small
step above and below the surface is taken to be equal to the step size, the problem
becomes constrained to approximating an SDF in close proximity to the surface.

MLP Coordinate System

The second challenge comes from using an MLP that operates on coordinate
space. One of the main principles of using the MLP-MLS approach is that the
MLP basis functions should be able to learn reoccurring patterns within an ob-
jects geometry, also called a self-prior. To facilitate this, it is import to operate
the MLP within a common coordinate frame which we will refer to as the local

7. A Novel MLS Approach 71

P P ′

Figure 7.7: The Pseudo-normal constrain method restricts the value of the SDF
to 0 at each x ∈ P, a positive ε value slightly outside the surface along the
normal direction, and a negative ε value slightly inside the surface along the
normal direction. Left: a set of sample points with surface normal information;
Right: point-set with pseudo-normal constraints.

coordinate system. For a query point q which we seek to construct the MLS ap-
proximation around, the local coordinate system is constructed in the following
way:

1. The k nearest neighbours of q are selected from the point-set using a
KDTree1 sampling procedure.

2. The average point-set position, x̃, and average surface normal vector, ñ,
are calculated from the k nearest neighbours of q.

3. The entire augmented point-set is then linear transformed via a translation
by −x̃ and a rotation through the angle θ, where θ = arctan (ñy/ñx).

The two transformations in step 3 have the effect of moving the origin of the
coordinate space to average position of the k nearest neighbours, x̃ and aligning
the average surface normal vector, ñ, with the y axis; we refer to this as the local
coordinate space for q. We also note that as the transforms are linear, the inverse
mapping from the coordinate space to the original global space is trivial to find,
requiring only the change of sign on the translation vector and rotation angle.

7.3.2 MLP-MLS Reconstruction: Framework

With the alterations to the MLP-MLS approach introduced in the previous Sec-
tion, the updated MLP training procedure is shown in Fig. 7.8.

1The KDTree is a data-structure that allows for efficient distance querying of scattered
data-points [62].

7. A Novel MLS Approach 72

Training Pipeline:

Input:
Point cloud

Training loop:

Select point x to
construct approx.

around

Select the N nearest
neighbors and

transform to local
coordinates

Feedforward the
transformed
coordinates

𝑥! → 𝑚" 𝑥!𝑥 → 𝑥!

Solve the constrained
optimization problem

for MLS

Drop M points from
the nearest

neighborhood

Evaluate the M
dropped points and

find the MSE
$𝑓(𝑥)

Backpropagate error
through the MLP

model

Execution phase (𝑚! 𝑥 now fixed):

Augment
Point Set

𝒫’

Feedforward neural
network to generate

basis function
𝑚! 𝑥 = 𝚽(𝑥)

Solve local MLS
optimization problem

'𝑓 𝑥 = ∑𝜶𝑻 𝑥 𝚽 𝑥

Obtain global implicit
surface function

'𝑓 𝑥

Extract surface iso-
contour using marching

squares
S = 𝑥 '𝑓 𝑥 = 0}

Augment
Point Set

𝒫’

Max epoch reached
yes

no

Figure 7.8: Shows the overall MLP-MLS pipeline for 2D surface reconstruction.
The procedure is broken into two parts: (1) a training phase, where optimal basis
function are learned using an MLP. (2) An execution phase, where the MLP has
fixed weights and the surface is extracted using marching squares.

The majority of the 2D MLP-MLS implementation inherits existing code from
the 1D function approximation case, with necessary adjustments made to ac-
commodate the structure of point-sets (positions and surface normals), the aug-
mentation using the pseudo-normal constraint method, and the local coordinate
frame construction. Furthermore, a new pipeline for visualisation was written to
enable efficient extraction of iso-contours from implicit fields; the visualisation
code leverages the Matplotlib python package and its built in marching squares
algorithm.

7. A Novel MLS Approach 73

7.3.3 MLP-MLS Reconstruction: Experiments

While MLP-MLS is still under development, in this section we present experi-
ments conducted on its current implementation. We make use of three point-sets
from the shapeset dataset (see Chapter. 5), namely: Thumb at 50% ground-truth
density, Hex Star at 25% ground-truth density, and Rabbit at 10% ground-truth
density; we refer to these as thumb-50, hex-star-25, and rabbit-10, respec-
tively.

The MLP-MLS training phase, for each of the point-sets, was run for 200 epochs,
with a k nearest neighborough size of 40 and M = 10 drop points. The Gaussian
weight term for the MLS approximation was selected via empirical experimen-
tation to be σ = 0.05 for all point-sets considered. The execution phase of the
MLP-MLS used marching squares on a meshed grid of size 200× 200.

As comparison methods, we also reconstructed the three points-sets using IMLS,
RIMLS, and IGR methods implemented in the PyPointset library (see Chap-
ter 6). The parameters for IMLS and RIMLS where selected empirically for each
point-set and are summarised in the table below. The IGR method was run for
5000 epochs for each of the three point-sets.

IMLS RIMLS
Thumb-50 σ2 = 0.001 σ2 = 0.001, σ2

r = 0.01, σ2
n = 0.006

Hex-Star-25 σ2 = 0.04 σ2 = 0.08, σ2
r = 0.5, σ2

n = 0.006

Rabbit-10 σ2 = 0.1 σ2 = 0.15, σ2
r = 0.6, σ2

n = 0.006

Table 7.1: Tabulates the parameters used in the IMLS and RIMLS reconstruction
methods. The parameter σ2 refers to the spatial Guassian weighting term, the
parameter σ2

r refers to the weighting term on the spatial residual in RIMLS and
σ2
n refers to the weighting term on the residual normal error in RIMLS.

7.3.4 MLP-MLS Reconstruction: Results

In this Section we present the results obtain from the experiments detailed in the
previous Section. To evaluate the quality of the reconstructed surface obtained,
we the make use of the standard surface reconstruction metric, the Chamfer
distance, which has been used in [33, 46, 63]. We formally define the Chamfer
distance below.

7. A Novel MLS Approach 74

Definition 7.2: (Chamfer Distance).
Let X represent the set of points that constitute the reconstructed surface
and let Y represent the ground-truth point-set, then the Chamfer distance
between the reconstructed surface and the ground-truth point-set is defined
by

dCD(X,Y) =
∑

x∈X
min
y∈Y

∥x− y∥22 +
∑

y∈Y
min
x∈X

∥x− y∥22. (7.10)

It was observed that the current implementation of MLP-MLS produces implicit
fields with significant artifacts, manifesting as 0 iso-contours far away from the
surface. We will discuss possible reasons for these artifacts later within this
Chapter. In presenting the results in this Section, we present the reconstruction
including these artifact as MLP-MLS and with the artifact manually removed as
MLP-MLS (Cleaned). This allows us to consider the merits and inferiorities of
the approach both in its current implementation and in future potential imple-
mentation if the approach can be adjusted to remove artifact.

The qualitative reconstruction for thumb-50, hex-star-25, and rabbit-10 are
shown in Fig. 7.9, Fig. 7.10, and Fig. 7.11, respectively. The quantitative Chamfer
distance metric, for each method, is tabulated in Table 7.2.

Reconstruction methods dCD (×10−4)
Dataset IMLS RIMLS IGR MLP-MLS MLP-MLS (clean)

Thumb-50 18.3 3.1 8.2 82.3 6.4
Hex-Star-25 102.1 18.2 7.4 72.3 16.1
Rabbit-10 43.2 6.1 6.5 94.3 14.5

Table 7.2: Table shows the calculated Chamfer distance between the recon-
structed surface and the ground-truth point-set (i.e., point-set_name-100). The
MLP-MLS (clean) class refers to the surface obtained via MLP-MLS after re-
moving the spurious iso-contours present. The best methods Chamfer distance
for each dataset is indicated in bold font.

7.3.5 MLP-MLS Reconstruction: Discussion

Evidenced by Table 7.2, MLP-MLS clearly does not achieve state-of-the-art re-
construction in its current state. However, considering the MLP-MLS approach
after removal of artifacts shows that the surface reconstruction consistently per-
forms better than the IMLS approach. Furthermore, considering the qualitative
reconstruction in Fig. 7.9, we see that the MLP-MLS method is able to handle
sharp features (see the red inset) and also periodic features (see the blue inset) of
the geometry better than both IGR and IMLS. Nevertheless, even in the cleaned

7. A Novel MLS Approach 75

case MLP-MLS appears to struggle to produce straight line, something we also
noted in our 1D experiments; this too must be rectified for MLP-MLS to be a
useful technique.

To improve the MLP-MLS approach, we must first identify the cause of the cur-
rent artifact that are appear within the reconstruction surface. The medial axis
defines regions which have more than one nearest boundary point. Considering
the reconstruction obtained for the MLP-MLS for the hex-star-25 point-set in
Fig. 7.10, we see that the artifacts lay almost exactly along the medial axis of
the star. This possibly indicates that our approach to constructing a local coor-
dinate system is not robust enough, as a small step either side of the medial axis
results in dramatically different definitions of local regions. Future work on this
framework will seek to rectify this, along with implementing more sophisticated
SDF constraining methods.

7.
A

N
o
v
el

M
L
S

A
ppro

ac
h

76

IMLS RIMLS IGR MLP-MLS MLP-MLS (Cleaned)
R

ed
 I

n
se

t
B

lu
e

In
se

t

Figure 7.9: Shows the reconstructed surface for the thumb-50 point-set using the three benchmark comparison methods and
MLP-MLS. The MLP-MLS column refers to the raw output of our method and the MLP-MLS (Cleaned) column refers to the
reconstruction after manual removal of artifacts.

7.
A

N
o
v
el

M
L
S

A
ppro

ac
h

77

IMLS RIMLS IGR MLP-MLS MLP-MLS (Cleaned)
R

ed
 I

n
se

t
B

lu
e

In
se

t

Figure 7.10: Shows the reconstructed surface for the hex-star-25 point-set using the three benchmark comparison methods
and MLP-MLS. The MLP-MLS column refers to the raw output of our method and the MLP-MLS (Cleaned) column refers
to the reconstruction after manual removal of artifacts.

7.
A

N
o
v
el

M
L
S

A
ppro

ac
h

78

-0.5 0.0 0.5

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

IMLS

-0.5 0.0 0.5

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

RIMLS

-0.5 0.0 0.5

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

IGR

-0.5 0.0 0.5

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

MLP-MLS

-0.5 0.0 0.5

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

MLP-MLS (Cleaned)

R
ed

 I
n
se

t
B

lu
e

In
se

t

Figure 7.11: Shows the reconstructed surface for the rabbit-10 point-set using the three benchmark comparison methods and
MLP-MLS. The MLP-MLS column refers to the raw output of our method and the MLP-MLS (Cleaned) column refers to the
reconstruction after manual removal of artifacts.

Chapter 8

Conclusion & Future Work

In this final Chapter we aim to bring the report to a conclusion. The fundamental
aim of this project was to investigate a novel approach to surface reconstruction,
we refer to as MLP-MLS. To enable the development of a novel surface recon-
struction approach we first constructed our own 2D point-set dataset we refer to
as the Shapeset dataset; we present the development of this in Chapter 5. Then
in Chapter 6, we presented three benchmark approaches to surface reconstruc-
tion and the PyPointset library which provides efficient implementations of the
methods in Python. Finally, in Chapter 7, we present the initial implementation,
experiment and results from our novel surface reconstruction approach.

While the results obtained for the 2D surface reconstruction method show that
MLP-MLS approach achieves inferior Chamfer distance scores compared with
RIMLS and IGR, the method does show merit. In particular the method shows
a strong potential at representing sharp and periodic features within geometry,
something typically quite challenging with only a local surface prior. Neverthe-
less, for the MLP-MLS approach to achieve high fidelity reconstruction, it must
overcome several limitations. In the remained of this Chapter, we outline several
directions for future work on this project to take.

The first limitation that must be addressed in the 2D case is the artifacts that
appear in the MLP-MLS reconstruction surface. As outlined in Section 7.3.5,
the initial next steps are to consider the mechanism by which we define the local
coordinate system and improve its robustness, especially along the medial axis.
Furthermore, the simplistic approach to enforcing a signed distance function we
implemented in this project (psuedo-normal constraints) should be changed for
a more robust alternative. Incorporating the Eikonal equation, introduced in the
IGR method in Section 6.1.3, directly into the MLS approximation framework
would be an interesting avenue to explore.

The second line of work revolves around the selection of parameters within the
MLS framework. It is the current authors view that if we can define what we
mean by optimal, then data-driven approaches to parameter selection are likely to
be fruit-full. As an interesting next step, we would view parameter selection from
the lens of Bayesian inverse problems and make use of Markov Chain Monte Carlo

79

8. Conclusion & Future Work 80

techniques to produce posterior distributions over parameter space. Further work
could then take place on using MLPs to learn optimal parameters, in much the
same way we aimed to learn optimal basis function in this project.

The final line of work centers on moving the MLP-MLS approach to reconstruc-
tion of surfaces in 3D. This is perhaps the most technically challenging line of
future work. Recall that in Section 7.3.1 we introduce the local coordinate frame;
the idea was that the basis functions should be optimised such that the geome-
try in a local region to the query points appears in a common coordinate space,
therefore allowing the basis functions to extract reoccurring features within the
geometry (i.e., a self-prior). The extra degree of freedom brought by moving to
3D means that instead of considering tangent lines, like we did in this project,
we must instead consider tangent planes. Tangent planes have a rotational de-
gree of freedom, around the defined normal vector, which makes placement of
a coordinate system such that reoccurring features can be extracted difficult.
Theoretically, this requires parameterising the SO(3) rotation group, which is
notoriously hard. However, there has been increasing attention on solving this
problem using neural networks in recent years. Future work will seek to solve
the rotation problem via training a secondary MLP to learn optimal coordinate
spaces for the basis functions, opening the door for MLP-MLS to 3D reconstruc-
tion.

Bibliography

[1] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A.
Levine, A. Sharf, and C. T. Silva, “A survey of surface reconstruction from
point clouds,” Computer Graphics Forum, vol. 36, no. 1, p. 301–329, Jan
2017.

[2] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep learning
for 3d point clouds: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 43, no. 12, pp. 4338–4364, 2020.

[3] F. Pomerleau, F. Colas, R. Siegwart et al., “A review of point cloud registra-
tion algorithms for mobile robotics,” Foundations and Trends® in Robotics,
vol. 4, no. 1, pp. 1–104, 2015.

[4] R. T. H. Collis, “Lidar,” Appl. Opt., vol. 9, no. 8, pp. 1782–1788, Aug
1970. [Online]. Available: http://opg.optica.org/ao/abstract.cfm?URI=
ao-9-8-1782

[5] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” ACM siggraph computer graphics, vol. 21,
no. 4, pp. 163–169, 1987.

[6] M. Levoy and G. Turk, “The stanford 3d scanning repository.” [Online].
Available: http://graphics.stanford.edu/data/3Dscanrep/

[7] S. Dineen, Multivariate calculus and geometry / Seán Dineen., ser. Springer
undergraduate mathematics series. London: Springer, 1998.

[8] L. L. Mirsky, An introduction to linear algebra / by L. Mirsky. Oxford:
Clarendon Press, 1955.

[9] J. M. Lee, Riemannian manifolds : an introduction to curvature / John M.
Lee., ser. Graduate texts in mathematics ; 176. New York: Springer, 1997.

[10] C. Öztireli, “Further Graphics,” Department of Computer Science and Tech-
nology, University of Cambridge, November 2021.

[11] K. Jittorntrum, “An implicit function theorem,” Journal of Optimization
Theory and Applications, vol. 25, no. 4, pp. 575–577, 1978.

[12] A. Charnes, E. L. Frome, and P. L. Yu, “The equivalence of generalized
least squares and maximum likelihood estimates in the exponential family,”

81

http://opg.optica.org/ao/abstract.cfm?URI=ao-9-8-1782
http://opg.optica.org/ao/abstract.cfm?URI=ao-9-8-1782
http://graphics.stanford.edu/data/3Dscanrep/

Bibliography 82

Journal of the American Statistical Association, vol. 71, no. 353, pp.
169–171, 1976. [Online]. Available: http://www.jstor.org/stable/2285762

[13] H. Cox, “A demonstration of taylor’s theorem,” Camb. Dublin Math. J, vol. 6,
pp. 80–81, 1851.

[14] M. Merriman, A List of Writings Relating to the Method of Least Squares:
With Historical and Critical Notes. Academy, 1877, vol. 4.

[15] K. Fogarty, “Project 2: (neural networks and machine learning),”
MATH49111: Scientific Computing, 2020, University of Manchester.

[16] D. L. Elliott, “A better activation function for artificial neural networks,”
Tech. Rep., 1993.

[17] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural net-
works,” towards data science, vol. 6, no. 12, pp. 310–316, 2017.

[18] P. Sibi, S. A. Jones, and P. Siddarth, “Analysis of different activation func-
tions using back propagation neural networks,” Journal of theoretical and
applied information technology, vol. 47, no. 3, pp. 1264–1268, 2013.

[19] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, and M. Dehmer, “An In-
troductory Review of Deep Learning for Prediction Models With Big Data,”
Frontiers in Artificial Intelligence, vol. 3, no. February, pp. 1–23, 2020.

[20] C. F. Higham and D. J. Higham, “Deep learning: An introduction for applied
mathematicians,” SIAM Review, vol. 61, no. 4, pp. 860–891, 2019.

[21] H. Robbins and S. Monro, “A stochastic approximation method,” The annals
of mathematical statistics, pp. 400–407, 1951.

[22] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366,
1989.

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436–444, 2015.

[24] B. Hanin and D. Rolnick, “Deep relu networks have surprisingly few activa-
tion patterns,” Advances in neural information processing systems, vol. 32,
2019.

[25] M. Telgarsky, “Representation benefits of deep feedforward networks,”
CoRR, vol. abs/1509.08101, 2015. [Online]. Available: http://arxiv.org/
abs/1509.08101

http://www.jstor.org/stable/2285762
http://arxiv.org/abs/1509.08101
http://arxiv.org/abs/1509.08101

Bibliography 83

[26] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud, J. A.
Levine, A. Sharf, and C. T. Silva, “A survey of surface reconstruction from
point clouds,” in Computer Graphics Forum, vol. 36, no. 1. Wiley Online
Library, 2017, pp. 301–329.

[27] K. Fogarty, “Point cloud surface reconstruction,” CMP9766M : Frontier of
Robotics Research, 2022, University of Lincoln.

[28] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface
reconstruction from unorganized points,” in Proceedings of the 19th annual
conference on computer graphics and interactive techniques, 1992, pp. 71–78.

[29] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdis-
ciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–459, 2010.

[30] A. Nealen, “An as-short-as-possible introduction to the least squares,
weighted least squares and moving least squares methods for scattered data
approximation and interpolation,” URL: http://www. nealen. com/projects,
vol. 130, no. 150, p. 25, 2004.

[31] D. Levin, “The approximation power of moving least-squares,” Mathematics
of computation, vol. 67, no. 224, pp. 1517–1531, 1998.

[32] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva,
“Computing and rendering point set surfaces,” IEEE Transactions on visu-
alization and computer graphics, vol. 9, no. 1, pp. 3–15, 2003.

[33] R. Kolluri, “Provably good moving least squares,” ACM Transactions on
Algorithms (TALG), vol. 4, no. 2, pp. 1–25, 2008.

[34] N. Amenta and Y. J. Kil, “Defining point-set surfaces,” ACM Transactions
on Graphics (TOG), vol. 23, no. 3, pp. 264–270, 2004.

[35] M. Alexa and A. Adamson, “On normals and projection operators for sur-
faces defined by point sets.” in PBG. Citeseer, 2004, pp. 149–155.

[36] A. Adamson and M. Alexa, “Approximating and intersecting surfaces from
points,” in Proceedings of the 2003 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, 2003, pp. 230–239.

[37] G. Guennebaud, M. Germann, and M. Gross, “Dynamic sampling and ren-
dering of algebraic point set surfaces,” in Computer Graphics Forum, vol. 27,
no. 2. Wiley Online Library, 2008, pp. 653–662.

[38] C. Shen, J. F. O’Brien, and J. R. Shewchuk, “Interpolating and approximat-
ing implicit surfaces from polygon soup,” in ACM SIGGRAPH 2004 Papers,
2004, pp. 896–904.

Bibliography 84

[39] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving point set
surfaces based on non-linear kernel regression,” in Computer graphics forum,
vol. 28, no. 2. Wiley Online Library, 2009, pp. 493–501.

[40] P. J. Huber, “Robust statistics,” in International encyclopedia of statistical
science. Springer, 2011, pp. 1248–1251.

[41] S.-L. Liu, H.-X. Guo, H. Pan, P.-S. Wang, X. Tong, and Y. Liu, “Deep
implicit moving least-squares functions for 3d reconstruction,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 1788–1797.

[42] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans, “Reconstruction and representation of
3d objects with radial basis functions,” in Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, 2001, pp. 67–
76.

[43] M. Kazhdan, “Reconstruction of solid models from oriented point sets,” in
Proceedings of the third Eurographics symposium on Geometry processing,
2005, pp. 73–es.

[44] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in
Proceedings of the fourth Eurographics symposium on Geometry processing,
vol. 7, 2006.

[45] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,” ACM
Transactions on Graphics (ToG), vol. 32, no. 3, pp. 1–13, 2013.

[46] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf:
Learning continuous signed distance functions for shape representation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 165–174.

[47] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit geo-
metric regularization for learning shapes,” arXiv preprint arXiv:2002.10099,
2020.

[48] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn: Octree-
based convolutional neural networks for 3d shape analysis,” ACM Transac-
tions On Graphics (TOG), vol. 36, no. 4, pp. 1–11, 2017.

[49] Z. Wang, P. Wang, Q. Dong, J. Gao, S. Chen, S. Xin, and C. Tu, “Neural-
imls: Learning implicit moving least-squares for surface reconstruction from
unoriented point clouds,” arXiv preprint arXiv:2109.04398, 2021.

[50] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2mesh: A
self-prior for deformable meshes,” arXiv:2005.11084 [cs], May 2020, arXiv:
2005.11084. [Online]. Available: http://arxiv.org/abs/2005.11084

http://arxiv.org/abs/2005.11084

Bibliography 85

[51] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner,
“Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 5828–5839.

[52] D. Schunck, F. Magistri, R. A. Rosu, A. Cornelißen, N. Chebrolu, S. Paulus,
J. Léon, S. Behnke, C. Stachniss, H. Kuhlmann et al., “Pheno4d: A spatio-
temporal dataset of maize and tomato plant point clouds for phenotyping
and advanced plant analysis,” Plos one, vol. 16, no. 8, p. e0256340, 2021.

[53] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich
3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[54] “Free SVG,” https://freesvg.org, accessed: 2022-08-21.

[55] J. Canny, “A computational approach to edge detection,” IEEE Transactions
on pattern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

[56] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced
data,” in Proceedings of the 1968 23rd ACM national conference, 1968, pp.
517–524.

[57] C. Oztireli, G. Guennebaud, and M. Gross, “Feature Preserving
Point Set Surfaces based on Non-Linear Kernel Regression,” Computer
Graphics Forum, vol. 28, no. 2, pp. 493–501, 2009. [Online]. Available:
https://hal.inria.fr/inria-00354969

[58] W. S. Cleveland, “Robust locally weighted regression and smoothing scat-
terplots,” Journal of the American statistical association, vol. 74, no. 368,
pp. 829–836, 1979.

[59] Y. Susanti, H. Pratiwi, S. Sulistijowati, T. Liana et al., “M estimation, s
estimation, and mm estimation in robust regression,” International Journal
of Pure and Applied Mathematics, vol. 91, no. 3, pp. 349–360, 2014.

[60] T. Oberhuber, “Numerical recovery of the signed distance function,” in
Czech-Japanese Seminar in Applied Mathematics, Prague, Czech Republic,
2004, pp. 148–164.

[61] C. Shen, “Building interpolating and approximating implicit surfaces using
moving least squares,” Ph.D. dissertation, University of California, Berkeley,
2006.

[62] P. Ram and K. Sinha, “Revisiting kd-tree for nearest neighbor search,” in
Proceedings of the 25th acm sigkdd international conference on knowledge
discovery & data mining, 2019, pp. 1378–1388.

https://freesvg.org
https://hal.inria.fr/inria-00354969

Bibliography 86

[63] Z. Huang, Y. Wen, Z. Wang, J. Ren, and K. Jia, “Surface reconstruction
from point clouds: A survey and a benchmark,” 2022.

	Acknowledgements
	Abstract
	1 Project Introduction
	1.1 Introduction
	1.2 The Surface Reconstruction Problem
	1.3 Project Aims & Objectives
	1.4 Contributions
	1.5 Report Structure
	1.6 Assumed Knowledge
	1.7 A Brief Note On Nomenclature

	2 Differential Geometry
	2.1 Manifold Surfaces
	2.1.1 Differential Properties of Manifolds

	2.2 Implicit Surface
	2.2.1 Signed Distance Function

	3 Function Approximation
	3.1 Least Squares Approximation
	3.1.1 The Test Problem
	3.1.2 A Note On Basis Functions
	3.1.3 Ordinary Least Squares
	3.1.4 Moving Least Squares

	3.2 Neural Networks for Function Approximation
	3.2.1 Introduction to Neural Networks
	3.2.2 Evaluating the MLP
	3.2.3 Training the MLP
	3.2.4 Neural Network Approximation Power

	4 Literature Review
	4.1 Local Smoothness
	4.1.1 Tangent Projection Methods
	4.1.2 Moving Least Squares (MLS)

	4.2 Global Smoothness
	4.2.1 Radial Basis Function
	4.2.2 Poisson Reconstruction

	4.3 Data-driven Approaches
	4.3.1 Direct SDF Inference
	4.3.2 Neural MLS Framework
	4.3.3 Other Learning Based Approaches

	4.4 Summary

	5 The Shapeset Dataset
	5.1 Shapeset Dataset Pipeline
	5.1.1 Image Resizing
	5.1.2 Edge Detection
	5.1.3 Surface Normal Estimation
	5.1.4 Point-set Resampling

	6 Benchmark Approaches
	6.1 Reconstruction Methods
	6.1.1 Implicit Moving Least Squares
	6.1.2 Robust Implicit Moving Least Squares
	6.1.3 Implicit Geometry Regularisation

	6.2 Point-set Reconstruction Library
	6.2.1 The Point-set Class
	6.2.2 IMLS Implementation

	7 A Novel MLS Approach
	7.1 MLP-MLS Overview
	7.2 MLP-MLS in 1D
	7.2.1 The Test Problem
	7.2.2 The Approximation Procedure
	7.2.3 Experiments in 1D

	7.3 MLP-MLS in 2D
	7.3.1 Alterations to the MLP-MLS Approach
	7.3.2 MLP-MLS Reconstruction: Framework
	7.3.3 MLP-MLS Reconstruction: Experiments
	7.3.4 MLP-MLS Reconstruction: Results
	7.3.5 MLP-MLS Reconstruction: Discussion

	8 Conclusion & Future Work
	Bibliography

